Local Statistics of Lyapunov Exponents: From GUE to picket fence

Gernot Akemann

(Bielefeld University)
ISF Workshop Yad Hashmona, 3.-8. October 2018
joint work with Zdzisław Burda \& Mario Kieburg [J. Phys. A 47 (2014) \& arXiv: 1809:05905]

Outline

- Lyapunov exponents from products of M random matrices of size $N \times N$
- Double scaling limit $M, N \rightarrow \infty$: Transition between GUE and picket fence statistics
- Summary and open questions

Lyapunov exponents from products of matrices

- classical chaos: close initial conditions \rightarrow diverging trajectories

Lyapunov exponents from products of matrices

- classical chaos: close initial conditions \rightarrow diverging trajectories
- simple model for chaotic dynamical systems: discrete time $(=M$) evolution by matrix multiplication

$$
\vec{v}_{M}=X_{M} \vec{v}_{M-1}=X_{M} \cdots X_{1} \vec{v}_{0} \text { on initial vector } \vec{v}_{0}
$$

\rightarrow study product matrix $Y=X_{M} \cdots X_{1}$

Lyapunov exponents from products of matrices

- classical chaos: close initial conditions \rightarrow diverging trajectories
- simple model for chaotic dynamical systems: discrete time $(=M$) evolution by matrix multiplication

$$
\vec{v}_{M}=X_{M} \vec{v}_{M-1}=X_{M} \cdots X_{1} \vec{v}_{0} \text { on initial vector } \vec{v}_{0}
$$

\rightarrow study product matrix $Y=X_{M} \cdots X_{1}$

- Lyapunov matrix $L=\frac{1}{2 M} \log \left(Y^{\dagger} Y\right)$: when $M \rightarrow \infty$ the eigenvalues μ_{j} of L become the Lyapunov exponents

Lyapunov exponents from products of matrices

- classical chaos: close initial conditions \rightarrow diverging trajectories
- simple model for chaotic dynamical systems: discrete time ($=M$) evolution by matrix multiplication

$$
\vec{v}_{M}=X_{M} \vec{v}_{M-1}=X_{M} \cdots X_{1} \vec{v}_{0} \text { on initial vector } \vec{v}_{0}
$$

\rightarrow study product matrix $Y=X_{M} \cdots X_{1}$

- Lyapunov matrix $L=\frac{1}{2 M} \log \left(Y^{\dagger} Y\right)$: when $M \rightarrow \infty$ the eigenvalues μ_{j} of L become the Lyapunov exponents
- [Furstenberg, Kesten 60]: choose $X_{j=1, \ldots, M}$ independent $N \times N$ Gaussian random matrices (or [Janik, Wieczorek 04; Narayanan, Neuberger 07, Blaizot, Nowak 08; Gudowska-Nowak et al. 03; ...])

Can we determine the spectral statistics of $Y^{\dagger} Y$ (or L)?

Spectral statistics of Lyapunov exponents μ_{j}

- e.g. density of μ_{j} and correlations amongst them
- What kind of questions can we ask?
- distinguish global vs. local statistics (for $N \rightarrow \infty$)
- local stats depends where we are in the spectrum: in the bulk or at a (soft/hard) edge

Spectral statistics of Lyapunov exponents μ_{j}

- e.g. density of μ_{j} and correlations amongst them
- What kind of questions can we ask?
- distinguish global vs. local statistics (for $N \rightarrow \infty$)
- local stats depends where we are in the spectrum: in the bulk or at a (soft/hard) edge
- What kind of limits can we take?
i) $M \rightarrow \infty$ with N fixed
ii) M fixed with $N \rightarrow \infty$
iii) both $M, N \rightarrow \infty \rightarrow$ double scaling limit

Spectral statistics of Lyapunov exponents μ_{j}

- e.g. density of μ_{j} and correlations amongst them
- What kind of questions can we ask?
- distinguish global vs. local statistics (for $N \rightarrow \infty$)
- local stats depends where we are in the spectrum: in the bulk or at a (soft/hard) edge
- What kind of limits can we take?
i) $M \rightarrow \infty$ with N fixed
ii) M fixed with $N \rightarrow \infty$
iii) both $M, N \rightarrow \infty \rightarrow$ double scaling limit
- (When) will we find the same as for $M=1$ random matrix, i.e. universality?

Tools: Determinantal point process

- simplest choice: M complex Ginibre matrices

$$
\mathcal{P}\left(X_{j}\right) \sim \exp \left[-\operatorname{Tr}\left(X_{j}^{\dagger} X_{j}\right)\right], \forall j=1, \ldots, M
$$

Tools: Determinantal point process

- simplest choice: M complex Ginibre matrices

$$
\mathcal{P}\left(X_{j}\right) \sim \exp \left[-\operatorname{Tr}\left(X_{j}^{\dagger} X_{j}\right)\right], \forall j=1, \ldots, M
$$

- joint density of singular values ${ }^{2} s_{a}$ of Y form determinental point process [GA, Kieburg, Wei 13]

$$
\mathcal{P}_{N}(\{s\}) \sim \Delta_{N}(\{s\}) \operatorname{det}_{1 \leq b, c \leq N}\left[G_{0, M}^{M, 0}\left(\overline{0}_{0, \ldots, 0, b-1} \mid s_{C}\right)\right]
$$

with Vandermonde determinant $\Delta_{N}(\{s\})=\operatorname{det}\left[s_{a}^{b-1}\right]_{a, b=1}^{N}$ and Mejier G-function $G_{0, M}^{M, 0}$

- example for biorthogonal ensemble [Borodin 98]

Kernel and correlation functions

- for determinental point process with kernel $K_{N}(x, y)$:
\Rightarrow all k-point correlation functions known

$$
\begin{aligned}
R_{k}\left(s_{1}, \ldots, s_{k}\right) & \equiv \frac{N!}{(N-k)!} \int d s_{k+1} \cdots \int d s_{N} \mathcal{P}_{N}(\{s\}) \\
& =\operatorname{det}\left[K_{N}\left(s_{b}, s_{c}\right)\right]_{b, c=1}^{k}
\end{aligned}
$$

e.g. density $R_{1}(s)=K_{N}(s, s)$

Kernel and correlation functions

- for determinental point process with kernel $K_{N}(x, y)$:
\Rightarrow all k-point correlation functions known

$$
\begin{aligned}
R_{k}\left(s_{1}, \ldots, s_{k}\right) & \equiv \frac{N!}{(N-k)!} \int d s_{k+1} \cdots \int d s_{N} \mathcal{P}_{N}(\{s\}) \\
& =\operatorname{det}\left[K_{N}\left(s_{b}, s_{c}\right)\right]_{b, c=1}^{k}
\end{aligned}
$$

e.g. density $R_{1}(s)=K_{N}(s, s)$

- kernel $K_{N}(x, y)=\sum_{j=0}^{N-1} P_{j}(x) G_{j}(y)$ for product of M complex Ginibre matrices with M, N fixed [GA, Kieburg, Ipsen 13]
- known for different products e.g. truncated unitary [Kieburg, Kuijlaars, Stivigny 15]

Limit ii): Know results for $M \geq 1$ fixed \& limit $N \rightarrow \infty$

- global spectrum:
resolvent $G(z)=\int \frac{\rho(x) d x}{z-x} \Rightarrow \rho(x)=\lim _{N \rightarrow \infty} R_{1}(x)$, $G(z)$ satisfies $M+1$ order eq. [Müller 02; Burda et al. 10; Götze, Tikhomirov 10; O'Rourke; Soshnikov 11]

Limit ii): Know results for $M \geq 1$ fixed \& limit $N \rightarrow \infty$

- global spectrum:
resolvent $G(z)=\int \frac{\rho(x) d x}{z-x} \Rightarrow \rho(x)=\lim _{N \rightarrow \infty} R_{1}(x)$,
$G(z)$ satisfies $M+1$ order eq. [Müller 02; Burda et al. 10; Götze,
Tikhomirov 10; O'Rourke; Soshnikov 11]
- origin = hard edge $\rho(x \approx 0) \sim x^{-M /(M+1)}$
- soft edge $\rho \sim \sqrt{ }$ vanishing $\forall M \geq 1$

Limit ii): Know results for $M \geq 1$ fixed \& limit $N \rightarrow \infty$

- global spectrum:
resolvent $G(z)=\int \frac{\rho(x) d x}{z-x} \Rightarrow \rho(x)=\lim _{N \rightarrow \infty} R_{1}(x)$,
$G(z)$ satisfies $M+1$ order eq. [Müller 02; Burda et al. 10; Götze,
Tikhomirov 10; O'Rourke; Soshnikov 11]
- origin $=$ hard edge $\rho(x \approx 0) \sim x^{-M /(M+1)}$
- soft edge $\rho \sim \sqrt{ }$ vanishing $\forall M \geq 1$

- local spectrum:
- bulk and soft edge same as for $M=1$ [Liu, Wang, Zhang 2016]

$$
\begin{aligned}
& K_{\text {Sine }}(x, y)=\frac{\sin (x-y)}{x-y} \text { and } \\
& \hline K_{\text {Airy }}(x, y)=\int_{0}^{\infty} \operatorname{Ai}(x+t) \operatorname{Ai}(y+t) d t
\end{aligned}
$$

\ldots local spectrum $M \geq 1$ continued

- $M=1,2, \ldots$ different Meijer-G kernels ($M=1$ Bessel) [Kuijlaars, Zhang 14]

$$
K_{\text {Meijer }}(x, y)=\int_{0}^{1} G_{1, M+1}^{0,1}(\mid t x) G_{M+1,0}^{M, 1}(\mid t y) d t
$$

from PhD thesis Ipsen 2014 (unfolded)

... local spectrum $M \geq 1$ continued

- $M=1,2, \ldots$ different Meijer-G kernels ($M=1$ Bessel)
[Kuijlaars, Zhang 14]

$$
K_{\text {Meijer }}(x, y)=\int_{0}^{1} G_{1, M+1}^{0,1}(\mid t x) G_{M+1,0}^{M, 1}(\mid t y) d t
$$

from PhD thesis Ipsen 2014 (unfolded)

- local max =1st, 2nd etc. eigenvalue of $Y^{\dagger} Y$
\rightarrow for increasing M eigenvalues get more pronounced

Limit i): Know results for $M \rightarrow \infty$ \& limit N fixed

Eigenvalue density of Lyapunov matrix

$$
\begin{aligned}
& \rho_{L}(x) \approx \frac{1}{N} \sum_{j=1}^{N} \frac{1}{\sqrt{2 \pi \sigma_{j}^{2}}} \exp \left(-\frac{\left(x-L_{j}\right)^{2}}{2 \sigma_{j}^{2}}\right) \text { for } M \gg N \\
& L_{j}=\frac{\psi(j)}{2} \\
& \sigma_{j}=\sqrt{\frac{\psi^{\prime}(j)}{4 M}}
\end{aligned}
$$

- deterministic values = "picket fence": complex Ginibre [Newman 86; Forrester13], quaternion [Kargin 14] and real [Ipsen 14]

What can we expect in the double scaling limit iii) $M, N \rightarrow \infty$?

- for $M \rightarrow \infty$ sufficiently slow still Sine- \& Airy-kernel in bulk and at soft edge = universal correlations from $M=1$ cf. [Frahm 95; Ipsen, Schomerus 16]

What can we expect in the double scaling limit iii) $M, N \rightarrow \infty$?

- for $M \rightarrow \infty$ sufficiently slow still Sine- \& Airy-kernel in bulk and at soft edge = universal correlations from $M=1$ cf. [Frahm 95; Ipsen, Schomerus 16]
- for the smallest Lyapunov exponents at the hard edge deterministic behaviour

What can we expect in the double scaling limit iii) $M, N \rightarrow \infty$?

- for $M \rightarrow \infty$ sufficiently slow still Sine- \& Airy-kernel in bulk and at soft edge = universal correlations from $M=1$ cf. [Frahm 95; Ipsen, Schomerus 16]
- for the smallest Lyapunov exponents at the hard edge deterministic behaviour
- Is there a critical scaling $M=f(N)$ interpolating between deterministic and random matrix behaviour?

What can we expect in the double scaling limit iii) $M, N \rightarrow \infty$?

- for $M \rightarrow \infty$ sufficiently slow still Sine- \& Airy-kernel in bulk and at soft edge = universal correlations from $M=1$ cf. [Frahm 95; Ipsen, Schomerus 16]
- for the smallest Lyapunov exponents at the hard edge deterministic behaviour
- Is there a critical scaling $M=f(N)$ interpolating between deterministic and random matrix behaviour?

YES: linear regime $M=q N$ with q fixed

Aside: Level spacing distribution $P(s)$

- popular quantity: $P(s)=$ Fredholm-determinant of $K_{\text {Sine }}$
\rightarrow transition quantum chaos to integrable
[Bohigas,Giannoni,Schmit 84] VS. [Berry, Tabor 77]

Aside: Level spacing distribution $P(s)$

- popular quantity: $P(s)=$ Fredholm-determinant of $K_{\text {Sine }}$
\rightarrow transition quantum chaos to integrable
[Bohigas,Giannoni,Schmit 84] VS. [Berry, Tabor 77]

- harmonic oszillator: equal spacing = picket fence $\Rightarrow P(s)=\delta(s-1)$
- Lyapunov exponents not equally spaced \rightarrow unfold:
$\left(Y^{\dagger} Y\right)^{\frac{1}{M}}=e^{2 L}$ has density $\lim _{N \rightarrow \infty} R_{1}(u)=\chi_{[0,1]}$

Explaining critical scaling $M=q N$

- spacing $L_{j+1}-L_{j}=(\psi(j+1)-\psi(j)) / 2=1 / 2 j$ from $\psi(x)=\log (\Gamma(x))^{\prime}$ Digamma function
- width $\sigma_{j} \approx 1 / \sqrt{4 j M}$

Explaining critical scaling $M=q N$

- spacing $L_{j+1}-L_{j}=(\psi(j+1)-\psi(j)) / 2=1 / 2 j$ from $\psi(x)=\log (\Gamma(x))^{\prime}$ Digamma function
- width $\sigma_{j} \approx 1 / \sqrt{4 j M}$
- width to spacing ratio $W S R_{j}=\frac{1}{2} \frac{\sigma_{j}+\sigma_{j-1}}{L_{j}-L_{j-1}} \approx \sqrt{j / M}$
- for $W S R \ll 1$ no overlapp, deterministic regime
- for WSR> 1 strong overlapp, correlations important

Explaining critical scaling $M=q N$

- spacing $L_{j+1}-L_{j}=(\psi(j+1)-\psi(j)) / 2=1 / 2 j$ from $\psi(x)=\log (\Gamma(x))^{\prime}$ Digamma function
- width $\sigma_{j} \approx 1 / \sqrt{4 j M}$
- width to spacing ratio $W S R_{j}=\frac{1}{2} \frac{\sigma_{j}+\sigma_{j-1}}{L_{j}-L_{j-1}} \approx \sqrt{j / M}$
- for $\mathrm{WSR} \ll 1$ no overlapp, deterministic regime
- for WSR> 1 strong overlapp, correlations important
- smallest exponents $W S R_{j} \approx \sqrt{j / M} \rightarrow 0$ deterministic for $j=1,2, \ldots$ for $M \rightarrow \infty$ independent of scaling $M=f(N)$

Explaining critical scaling $M=q N$

- spacing $L_{j+1}-L_{j}=(\psi(j+1)-\psi(j)) / 2=1 / 2 j$ from $\psi(x)=\log (\Gamma(x))^{\prime}$ Digamma function
- width $\sigma_{j} \approx 1 / \sqrt{4 j M}$
- width to spacing ratio $W S R_{j}=\frac{1}{2} \frac{\sigma_{j}+\sigma_{j-1}}{L_{j}-L_{j-1}} \approx \sqrt{j / M}$
- for $W S R \ll 1$ no overlapp, deterministic regime
- for WSR >1 strong overlapp, correlations important
- smallest exponents $W S R_{j} \approx \sqrt{j / M} \rightarrow 0$ deterministic for $j=1,2, \ldots$ for $M \rightarrow \infty$ independent of scaling $M=f(N)$
- largest exponents $W S R_{N} \approx \sqrt{N / M}=1 / \sqrt{q}$, i.e. deterministic for $q \rightarrow \infty$ and correlated for $q \ll 1$

Double scaling: 3 regimes

- I) $\frac{M}{N} \rightarrow \infty \Leftrightarrow$ WSR $\rightarrow 0$ deterministic behaviour \forall exponents (incl. N fixed)

Double scaling: 3 regimes

- I) $\frac{M}{N} \rightarrow \infty \Leftrightarrow$ WSR $\rightarrow 0$ deterministic behaviour \forall exponents (incl. N fixed)
- II) $\frac{M}{N} \rightarrow 0 \Leftrightarrow$ WSR $\rightarrow \infty$ universal random matrix statistics: bulk \& soft edge (incl. M fixed)

Double scaling: 3 regimes

- I) $\frac{M}{N} \rightarrow \infty \Leftrightarrow$ WSR $\rightarrow 0$ deterministic behaviour \forall exponents (incl. N fixed)
- II) $\frac{M}{N} \rightarrow 0 \Leftrightarrow$ WSR $\rightarrow \infty$ universal random matrix statistics: bulk \& soft edge (incl. M fixed)
- III) $\frac{M}{N}=q$ transition from deterministic to random matrix

Double scaling: 3 regimes

- I) $\frac{M}{N} \rightarrow \infty \Leftrightarrow$ WSR $\rightarrow 0$ deterministic behaviour \forall exponents (incl. N fixed)
- II) $\frac{M}{N} \rightarrow 0 \Leftrightarrow$ WSR $\rightarrow \infty$ universal random matrix statistics: bulk \& soft edge (incl. M fixed)
- III) $\frac{M}{N}=q$ transition from deterministic to random matrix $\frac{M}{N}=\frac{f(N)}{N} \rightarrow \infty$

$$
M \sim a N
$$

$$
\frac{M}{N}=\frac{f(N)}{N} \rightarrow 0
$$

What are the transition kernels for III) in the middle?

Transition regime III): Bulk

- interpolating bulk kernel:

$$
K_{\text {bulk }}(\xi, \zeta ; q) \propto \sum_{j=-\infty}^{\infty} e^{j(\xi-\zeta) q} \operatorname{Re}\left(\operatorname{erfi}\left[\sqrt{\frac{\pi^{2}}{2 q}}+i \sqrt{q / 2}(\zeta-j)\right]\right)
$$

- checks: $\lim _{q \rightarrow 0} \rightarrow K_{\text {Sine }}(\xi, \zeta)$ and $\lim _{q \rightarrow \infty} \rightarrow$ picket fence
- universality for coupled Ginibre and Bernoulli (numerics)

Transition regime III): Soft edge

- interpolating soft edge kernel:

$$
K_{\text {soft }}(\xi, \zeta ; q) \propto \int_{i \mathbb{R}+\frac{1}{2}} d t \frac{\left(1-e^{-t q-(\xi-\zeta) q^{1 / 3}}\right)^{t-1}}{2 \pi i \Gamma[1+t]} e^{t^{2}-\left(\gamma(q)+\zeta q^{2 / 3}\right) t}
$$

- checks: $\lim _{q \rightarrow 0} \rightarrow K_{\text {Ai }}(\xi, \zeta)$ and $\lim _{q \rightarrow \infty} \rightarrow$ picket fence

Soft edge unfolded

\exists similar results for bulk and soft edge with $K \sim \oint \oint$
[Liu, Wang, Wang 1810.00433]

Summary and some open questions

- for product of M complex $N \times N$ Ginibre matrices:
- identified a critical double scaling limit $M=q N$
- for $q \rightarrow 0$ deterministic \& $q \rightarrow \infty$ universal GUE stats
- 2 interpolating kernels: q-deformed Sine- and Airy-kernel

Summary and some open questions

- for product of M complex $N \times N$ Ginibre matrices:
- identified a critical double scaling limit $M=q N$
- for $q \rightarrow 0$ deterministic \& $q \rightarrow \infty$ universal GUE stats
- 2 interpolating kernels: q-deformed Sine- and Airy-kernel

Open

- transition Tracy-Widom to Gauß for largest Lyapunov exponent
- repeat for complex eigenvalues: stability exponents cf. [Qi et al. 2014-18]
- different products incl. mixed: universality?

