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0. Hilbert-Pólya vs operator-valued zeta functions

In the Hilbert-Pólya programme one investigates operators whose eigenvalues
correspond to the locations of the zeros of the zeta function.

For example, one might consider the properties of the operator

1
2(1− iĥBK),

where ĥBK = x̂p̂ + p̂x̂ denotes the Berry-Keating Hamiltonian.

Here we consider the operator

ζ
(
1
2(1− iĥBK)

)
.

We investigate such an operator by letting it act on trigonometric functions.

We will find, for x ∈ (0, π], that

ζ
(
1
2(1− iĥBK)

)
sinx =

sinx

2(1− cosx)
.
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From this we can deduce that

ζ(−n) = (−1)n
Bn+1

n + 1

for n a positive-odd integer, where {Bn} are the Bernoulli numbers.

There are numerous similar relations of the kind.

Another example is

ζ
(
1
2(3− iĥBK)

)
sinx =

π − x

2
for x ∈ [0, π], from which we can deduce that ζ(s) vanishes for negative-even
integers s without analytically continuing the functional equation

ζ(s) = 2sπs−1 sin
(
1
2πs

)
Γ(1− s)ζ(1− s).

We can also deduce that ζ(0) = −1
2, and that ζ(s) has a pole at s = 1.
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1. Hamiltonian for the Riemann zeros

Consider the ‘Hamiltonian’ operator

Ĥ =
1

1− e−ip̂
(x̂p̂ + p̂x̂) (1− e−ip̂)

on R+ = (0,∞).

With the boundary condition
ψ(0) = 0,

required to ensure
⟨φ, Ĥψ⟩ = ⟨Ĥφ, ψ⟩,

the eigenvalues {En} of Ĥ satisfy the property that
{
1
2(1− iEn)

}
are the

nontrivial zeros of the Riemann zeta function.

The eigenstates of Ĥ are given by the Hurwitz zeta function

ψn(x) = −ζ(zn, x + 1),

with eigenvalues
En = i(2zn − 1).
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2. The shift operator and its inverse

Defining

∆̂ ≡ 1− e−ip̂,

in units ℏ = 1 we have

p̂ = −i
d

dx
so that

∆̂f (x) = f (x)− f (x− 1).

As for ∆̂−1 we have

∆̂−1 =
1

1− e−ip̂
=

1

ip̂

−ip̂

e−ip̂ − 1
=

1

ip̂

∞∑
n=0

Bn
(−ip̂)n

n!
.

In particular, if f (x) → 0 sufficiently fast, then we have

∆̂−1f (x) = −
∞∑
k=1

f (k + x).
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3. Uniqueness of ∆̂ψ

We multiply the eigenvalue equation

Ĥψ = Eψ

on the left by ∆̂.

Recall that
Ĥ = ∆̂−1(x̂p̂ + p̂x̂)∆̂.

This gives a first-order linear differential equation

(x̂p̂ + p̂x̂)∆̂ψ = −i

(
2x

d

dx
+ 1

)
∆̂ψ = E ∆̂ψ

for the function ∆̂ψ, whose solution is unique and is given by

∆̂ψ = x−z

up to a multiplicative constant.

Therefore,
ψ(x) = ∆̂−1x−z.
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4. Eigenstates and eigenvalues

To see ∆̂−1x−z = −ζ(z, x + 1), observe that

∆̂−1x−z =
1

ip̂

∞∑
n=0

Bn
(−ip̂)n

n!
x−z

=
1

1− z

∞∑
n=0

Bn
(−ip̂)n

n!
x1−z.

Because ip̂ = ∂x and

∂nx x
µ =

Γ(µ + 1)

Γ(µ− n + 1)
xµ−n,

setting µ = 1− z we find

∆̂−1x−z =
Γ(2− z)

1− z

∞∑
n=0

Bn
(−1)n

n!

x1−z−n

Γ(2− z − n)
,

but we have Γ(2− z) = (1− z)Γ(1− z) and

1

Γ(2− z − n)
=

1

2πi

∫
C

du eu un+z−2,
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so

∆̂−1x−z =
Γ(1− z)

2πi
x1−z

∫
C

du eu uz−2
∞∑
n=0

Bn
(−u/x)n

n!

=
Γ(1− z)

2πi
x1−z

∫
C

du euuz−2 −u/x
e−u/x − 1

Now we scale the integration variable according to u/x = t and obtain

∆̂−1x−z =
Γ(1− z)

2πi

∫
C

dt
ext tz−1

1− e−t
= −ζ(z, x + 1).

As for the eigenvalues, we have

Ĥψz(x) = ∆̂−1 (x̂p̂ + p̂x̂) ∆̂∆̂−1x−z = i(2z − 1)ψz(x).

Because ψ(0) = −ζ(z, 1) = −ζ(z) = 0, z is a zero of ζ(z).

Random Matrices, Integrability and Complex Systems c⃝ DC Brody 2018



Operator-valued zeta functions - 9 - Yad Hashmona, 5 October 2018

5. Quantisation condition for the Berry-Keating Hamiltonian

Hamiltonian Ĥ is similar to the Berry-Keating Hamiltonian

ĥBK = x̂ p̂ + p̂ x̂,

whose eigenstates and eigenvalues are

ϕBKz (x) = x−z and E = i(2z − 1).

The boundary condition ψ(0) = 0 then translates into the quantisation condition
for the Berry-Keating Hamiltonian (as a boundary condition):

φz(0) = 0,

where
φz(x) := ϕBKz (x)− ζ(z, x).

Because on L2(R+), p̂ has a strictly positive imaginary part, both ∆̂ and ∆̂−1

are bounded and invertible. ⇒ ĥBK and Ĥ are isospectral.

But ĥBK is self-adjoint on R+, so that E is real.
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6. Relations from Fourier analysis

Before we turn to the analysis of operator-valued zeta functions, we note the
following relations (cf. Clausen 1832) in Fourier analysis

∞∑
n=1

cos(nx)

n2m
=

(−1)m−1(2π)2m

2(2m)!
B2m

( x
2π

)
and ∞∑

n=1

sin(nx)

n2m−1
=

(−1)m(2π)2m−1

2(2m− 1)!
B2m−1

( x
2π

)
for m = 1, 2, . . ., where Bm(x) denotes the Bernoulli polynomial of order m.

If we set m = 1 in the sine series, we obtain
∞∑
n=1

sin(nx)

n
=
π − x

2
.

Series of this kind can be extended to cases for which m is 0 or a negative
integer.
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Such series can be summed by using Euler summation.

For example, we have
∞∑
n=1

einx = lim
r→1−

∞∑
n=1

(
reix

)n
= lim

r→1−

reix

1− reix
=

1

e−ix − 1
.

Taking the imaginary part, we deduce that
∞∑
n=1

sin(nx) =
sinx

2(1− cosx)
.
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7. The dilation generator and the Riemann dilation operator

Another ingredient we require is the notion of the dilation operator.

The generator of the dilation is x̂p̂, where p̂ = −i d/dx, so

eiλx̂p̂f (x) = f (eλx).

It follows that
sin(nx) = nix̂p̂ sinx.

Therefore, ignoring for now the question of the convergence of the sum, we find
∞∑
n=1

sin(nx)

n
=

∞∑
n=1

nix̂p̂

n
sinx = ζ (1− ix̂p̂) sin x.

Thus, the action of the Riemann dilation operator ζ(1− ix̂p̂) on a trigonometric
function generates a Fourier series.

From ĥBK = 2x̂p̂− i we have 1− ix̂p̂ = 1
2(3− iĥBK).
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It follows that

ζ (1− ix̂p̂) sin x = ζ
(
1
2(3− iĥBK)

)
sinx =

π − x

2
.

Now if the operator ζ (1− ix̂p̂) were invertible, then

1

ζ (1− ix̂p̂)

π − x

2
= sin x.

However, since x̂p̂ is the dilation generator, it cannot change the power of x, so
we arrive at a contradiction.

This suggests that the operator ζ (1− ix̂p̂) cannot be inverted because its
spectrum contains at least one zero eigenvalue.
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8. Consistency check

To check the consistency without relying on the summation representation of
ζ(s), we use the integral representation

ζ(s) =
Γ(1− s)

2πi

∫
C

ts−1

e−t − 1
dt

for the zeta function and
1

Γ(1− s)
=

1

2πi

∫
C

etts−1 dt

for the reciprocal of the Gamma function.

Because s appears in two different ways, our strategy is to check the validity of

1

Γ(ix̂p̂)

π − x

2
=
ζ (1− ix̂p̂)

Γ(ix̂p̂)
sinx.

For the left side we deduce that

1

Γ(ix̂p̂)

π − x

2
=

1

2πi

∫
C

ett−ix̂p̂

(
π − x

2

)
dt =

1

2πi

∫
C

et
(
π − t−1x

2

)
dt = −1

2x.
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The term π/2 has been annihilated because of the pole of ζ(s) at s = 1.

On the other hand, expanding sinx in a power series, we deduce from

ζ (1− ix̂p̂)

Γ(ix̂p̂)
xn =

1

2πi

∫
C

t−ix̂p̂

e−t − 1
xn dt =

1

2πi

∫
C

t−n

e−t − 1
xn dt =

ζ(1− n)

Γ(n)
xn

that
ζ (1− ix̂p̂)

Γ(ix̂p̂)
sinx =

∞∑
n=1

(−1)n+1ζ(2(1− n))

(2n− 1)!Γ(2n− 1)
x2n−1.

Since the right side must equal −1
2x, we infer

ζ(0) = −1

2
and ζ(−2) = ζ(−4) = · · · = 0.

Conversely, from these elementary facts about the zeta function we infer the
consistency.
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An essentially identical line of argument leads to the observation that

ζ (2− ix̂p̂) cos x =
π2

6
− πx

2
+
x2

4
and that

ζ (3− ix̂p̂) sin x =
π2x

6
− πx2

4
+
x3

12
,

and so on.

Thus, for each of the Clausen functions we obtain a corresponding
representation in the form of an operator ζ (N − ix̂p̂) acting on a trigonometric
function, for N a positive integer.

Each of these relations reveals some information about the values of ζ(s) for
real integral values of s.
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9. Operator method and parity conservation

Because
ix̂p̂ xα = αxα

and because ζ(s) is analytic except for a simple pole at s = 1, we have

ζ(N − ix̂p̂)xn = ζ(N − n)xn.

However, one must be careful about the existence of the pole.

To illustrate this, we consider the example ζ(1− ix̂p̂) sin x.

Expanding the sine series, and assuming the interchangeability of the two limits,
we obtain

ζ(1− ix̂p̂)

∞∑
n=1

(−1)n−1x2n−1

(2n− 1)!
=

∞∑
n=1

ζ(1− ix̂p̂)
(−1)n−1x2n−1

(2n− 1)!

=

∞∑
n=1

ζ(2− 2n)
(−1)n−1x2n−1

(2n− 1)!
= −1

2
x.

Random Matrices, Integrability and Complex Systems c⃝ DC Brody 2018



Operator-valued zeta functions - 18 - Yad Hashmona, 5 October 2018

This shows that term-by-term application of the differential operator ζ(1− ix̂p̂)
is not permissible because we have missed the constant term π/2 associated
with the pole of ζ(s).

In fact, for each of the examples discussed above, interchanging the limits leaves
out just one term corresponding to the pole of ζ(s).

This term is the only parity-violating term.

10. Analyticity conservation

The term-by-term application of the operator respects both parity and
analyticity.

To illustrate this, we consider the series
∞∑
n=1

sin(nx) =
sinx

2(1− cosx)
.
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Each term on the left has odd parity and the right is also odd.

However, while each term on the left is analytic and vanishes at x = 0, the right
side diverges like 1/x as x→ 0.

Indeed,
∞∑
n=0

ζ(−ix̂p̂)
(−1)n

(2n + 1)!
x2n+1 =

∞∑
n=0

ζ(−2n− 1)
(−1)n

(2n + 1)!
x2n+1

=
1

x

[ ∞∑
k=0

1

k!
Bk (ix)

k − 1− iB1x

]
.

Therefore, from the generating function
∑∞

k=0Bk x
k/k! = x/(ex − 1) with

B1 = −1
2 we get

∞∑
n=0

ζ(−ix̂p̂)
(−1)n

(2n + 1)!
x2n+1 =

sinx

2(1− cosx)
− 1

x
.

Remarkably, we recover the function, but with its singularity removed.
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The singular term corresponds to the pole of ζ(s) at s = 1.

Analogous results can be seen in other examples, for instance, in

ζ (−1− ix̂p̂) cos x =

∞∑
n=1

n cos(nx) = − 1

2(1− cosx)
.

Once again, there is no parity violation but the right side is singular at x = 0
and behaves like −1/x2, while each of the summands in the middle term is well
behaved.

By interchanging the order of differentiation and summation we obtain
∞∑
n=0

ζ (−1− ix̂p̂)
(−1)n

(2n)!
x2n = −

∞∑
n=0

(2n + 1)(ix)2n

(2n + 2)!
B2n+2

= − 1

2(1− cosx)
+

1

x2
,

and the singularity at the origin has been removed.
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11. Discussion

We have only considered one class of operator-valued zeta functions, namely,
zeta functions evaluated at a linear function of the dilation operator.

It appears that the action of this class of operators on trigonometric functions
only yields information about ζ(s) for real s, but...

The matrix elements of, for example, ζ(1− ix̂p̂), in the standard sine basis
{
√

2/π sin(nx)}, is given by

ζmn =

{
n/m if n divides m,
0 otherwise.

Thus, the matrix {ζmn} encodes the information about factorisation of integers.

This suggests that it might be possible to extract more information by studying
further properties of the class of operator-valued zeta functions considered here.
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To conclude, we have shown that by studying the action of Riemann dilation
operators on trigonometric functions, we are able to infer some properties of the
Riemann zeta function.

Of course, the properties of ζ(s) inferred here are already known.

Nevertheless, we were able to determine, for example, the locations of the trivial
zeros from elementary Fourier analysis without relying explicitly on the analytic
continuation of the zeta function.

This suggests that further research into actions of operator-valued zeta functions
may yield interesting new results.
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