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The Ginibre Ensemble

Let (mjj)ijen be i.i.d. Nc(0,1/N) variables. We consider the
matrix
My = (mj)ij<n
acting on CNV.
» What are the statistical properties of this matrix ensemble?

» Eigenvalues: Almost surely, My is diagonalizable. With
respect to Lebesgue measure H,N:1 d2);, the density is

dr) 1 IT N = AP T exp(=NIxP)

N 2y 7
[Tz, d°Ai N iZi<n <N

» Asymptotic density of states is uniform over unit disc D; C C.



» Quite a bit is known about asymptotic behavior of eigenvalues
in this ensemble and various generalizations.
Ginibre '65; Girko '84, '94: Bai 97; Tao, Vu '08, '10; Gotze,
Tikhomirov '10; Bourgade, Yau, Yin '14a, '14b; Yin '14; Alt,
Erdos, Krueger '18.

» Important fact: ||[([My — z]*[My — 2])"Y/?||oc ~ N, where as
eigenvalue spacing is N~1/2,

> In spite of this, much less is understood regarding the
eigenvector geometry. Note however Rudelson, Vershynin '15.
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In spite of this, much less is understood regarding the
eigenvector geometry. Note however Rudelson, Vershynin '15.
Which Eigenvectors? Given the eigenvalues ()Y,
associate TWO bases:

Column vectors: My - r; = \jr;,
Row vectors: {; - My = Ai4;,

Normalization: ¢; - r; = 0; ;.
| J

Then with Q; = r; ® ¢;,
My = Z)\iQi-



Statistics of the Q;'s

Chalker-Mehlig '98:
Let Mn(0), Mn(1) be independent copies of My and set

Mp(6) = cos(8)Mpn(0) + sin(8)Mp(1).



Statistics of the Q;'s

Chalker-Mehlig '98:
Let Mn(0), Mn(1) be independent copies of My and set

Mp(6) = cos(8)Mpn(0) + sin(8)Mp(1).

Then (at 8 = 0), eigenvalue trajectories (\;(f))i<n satisfy

BI0A 5 0i(0), 4(0)] = 1EITH( @} Q)I(0), 4(0)]

1 . 1—|\|2ifi =],
NEI(QF - Q)X (0), (0T ~ 4 1 13y,

v UL EEE

for typical eigenvalues.



Subsequent Work

» Burda, Nowak et al. ('99), Burda, Grela, Nowak et al. ('14),
Belinshi, Nowak, et al. ("16), Nowak, Tarnowski ('18) ;

» Starr, Walters ('14). Corrections to CM-"98 at 9D .

» Fyodorov ('17); Bourgade, Dubach ('18). Conditional on J; in

bulk,
1

WTT[Q;* Q]

scales to 1/ (2).
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Higher Order Correlations: Encoding by Permutations
Example: py(o; u,v) where 0 = (132)

Quer At =u1, Q> X2 =vi, Q3> A3 =, Q4 <> Ay = v, etc.
Qi AQ Qs
Tr[Qf Q2 Q: Qs Q3 Q4] = p(132)

Pn(132; u,v) = E[p(132)|Agj—1 = uj, Aoj = vj]




» Given k ¢ Nand u,v € Dk, we condition on
{>\2j_1 = uj, )\Qj =V forj € {1, R k}}

> ); has associated Q.
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with cycle order imposed.



Given k € N and u,v € Dk, we condition on
{>\2j_1 = uj, )\Qj =V forj € {1, R k}}

Aj has associated Q;.
Let Sa be the permutation group on A.
If L€ Spisacycleon A let

p(L) = NIy H Qj_1 Qo)

JEA
with cycle order imposed.
For o € Sy set

s = I a0

L cycles of o
Finally given u,v € DX,

pn(o) = E[p(0)|Agj—1 = uj, Aoy = v; for j € {1,... k}].



Computing limy pny(o), High Level

Let R(z) = (My — 2)7 1
1. Q; :flz—/\il . dzR(2).
Corresponding p(o), get p(o) with (Qz;)’s replaced by R(w;)’s
(respectively Qpi+1's by R(wait1)'s).
2. Write My = Uy TNU/T/-
Main Point: For Ginibre, can change of variables
My — (UN, TN) so that

)\1 — \71 — —
0 X v - -
TN — 0 0 )\3 \73 —

0 -+ 0 0 XMy

and v; € CN=7 are Gaussian with i.i.d. NVc(0,1/N) entries.



3. Define the N — j x N — j matrix

A Vj -
0 A1 Vigr -
0

T(f) — 0 )‘j+2 \7)‘+2

0 -~ 0 0 Ay

4. Let pU)(0) be analog of p(c) with TU) replacing Ty.
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where Ay is an explicit matrix depending on )\, z;'s, w;'s.



. Define the N —j x N — j matrix

70

A=
0 A1 Vin
0 0 Ao
0 .- 0

4. Let pU)(0) be analog of p(c) with TU) replacing Ty.

5. Viewing ¢ — pU)(o) as a random vector, get

E[p9(0)|A, (%)iz] = Ay, - 8V (0)

where Ay is an explicit matrix depending on )\, z;'s, w;'s.

. Hence

E[p(0)|A] = Ay, - - Ary(1d.0).

. Study asymptotics.



» Non Crossing Condition: For o, 7 € Sy say o =< 7 if every
cycle of o is a subcycle of 7 and 7 0 o1 has at most one
nontrivial cycle. Let < be transitive closure of <.
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» Non Crossing Condition: For o, 7 € Sy say o =< 7 if every
cycle of o is a subcycle of 7 and 7 0 o1 has at most one
nontrivial cycle. Let < be transitive closure of <.
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g (123)(4)(5)(6)
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> Let
1 1 1-7
h(u,v) = / fd%\ = log (7UV2> .
T Jo, A— 1) (A —v) u—vi|
and note that
1—dv 1—av

v h(u,v)) = 0,0y = -
0,0y exp(h(u, v)) = 9,0 e P

» This is exactly the correlation py(u, v) Chalker and Mehlig
computed.



Let .
bo = Z h(ua, Vcrfl(a))'
a=1

1 1 1
N r(U,V) = — ~ d2A
) (U V) 7T/Dla H ()\_u—a) ()‘7‘/0*1(&))

iToo 4o
The matrix 9t = D(u, v) is then defined by

ho(u,v) if o=,
N(o,7) =< npr(u,v)  ifo <7,
0 otherwise.

Note that

N = Z []Uqcr

€Sk



Macroscopic Limit

For u,v € D’l‘, define

Dist(u,v) := afgggk]{lua—Vﬁl}Aaﬁe?;]ipa#{lua—Uﬁl, [Va—va|}A
min {1 — |ua|, 1 —|val}. (3)
a€lk]

Theorem
For every o € Sk and every u,v € DX such that Dist(u,v) > 0, the
limit
plo;u,v) = lim py(o;u,v)
N—o0

exists.
Moreover

1. p(0) = 0u0ge™(1d, o),

2. The q, are rational inu,v (!).

3. p(o) factors over cycles.



Correlation Structure of Cycle

> Using spectral decomposition

et = Z e’ gy

geSy

and rationality of q,,

Oudge™ = > " [Oudve"]q,.

ocESK
>
[8U&Veha] = H p2(ua(a)7 Va)
a€lk]
Reminder: _
1—Zw
p2(z,w) =

Cz—wf



Corollary
There are two families of polynomials (Ry, £o)ses, in

u,v € CK x Ck, homogeneous of degree of degree (k21), so that

u,v ~1(u, 07 (v
p(Ck;u’v) :Z ma( ’ )Q/Ckoo ( ( )) H PZ(UU(Q)yVa)7

171)2 2
o) Vi(0)?Vi(v) aclh]

Example:

,04(U1, Vi, Uz, V2) =
1

(U1 — 1) (v1 — v2)

5 [,Oz(ula vi)p2(u2, v2) — p2(ur, v2) pa(u2, Vl)] :



