Eigenvector Correlations for the Ginibre Ensemble

Nick Crawford; The Technion

September 14, 2018

joint with Ron Rosenthal

The Ginibre Ensemble

Let $(m_{ij})_{i,j\in\mathbb{N}}$ be i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1/N)$ variables. We consider the matrix

$$M_N := (m_{ij})_{i,j \leq N}$$

acting on \mathbb{C}^N .

- What are the statistical properties of this matrix ensemble?
- ▶ **Eigenvalues:** Almost surely, M_N is diagonalizable. With respect to Lebesgue measure $\prod_{i=1}^{N} d^2 \lambda_i$, the density is

$$\frac{\mathrm{d}\mathbb{P}(\underline{\lambda})}{\prod_{i=1}^{N}\mathrm{d}^{2}\lambda_{i}} = \frac{1}{Z_{N}} \prod_{i < j \leq N} |\lambda_{i} - \lambda_{j}|^{2} \prod_{i \leq N} \exp(-N|\lambda_{i}|^{2})$$

▶ Asymptotic density of states is uniform over unit disc $\mathbf{D}_1 \subset \mathbb{C}$.

- Quite a bit is known about asymptotic behavior of eigenvalues in this ensemble and various generalizations. Ginibre '65; Girko '84, '94; Bai 97; Tao, Vu '08, '10; Götze, Tikhomirov '10; Bourgade, Yau, Yin '14a, '14b; Yin '14; Alt, Erdös, Krueger '18.
- ▶ Important fact: $\|([M_N z]^*[M_N z])^{-1/2}\|_{\infty} \sim N$, where as eigenvalue spacing is $N^{-1/2}$.
- ▶ In spite of this, much less is understood regarding the eigenvector geometry. Note however Rudelson, Vershynin '15.

- Quite a bit is known about asymptotic behavior of eigenvalues in this ensemble and various generalizations. Ginibre '65; Girko '84, '94; Bai 97; Tao, Vu '08, '10; Götze, Tikhomirov '10; Bourgade, Yau, Yin '14a, '14b; Yin '14; Alt, Erdös, Krueger '18.
- ▶ Important fact: $\|([M_N z]^*[M_N z])^{-1/2}\|_{\infty} \sim N$, where as eigenvalue spacing is $N^{-1/2}$.
- ► In spite of this, much less is understood regarding the eigenvector geometry. Note however Rudelson, Vershynin '15.
- ▶ Which Eigenvectors? Given the eigenvalues $(\lambda_i)_{i=1}^N$, associate TWO bases:

Column vectors: $M_N \cdot r_i = \lambda_i r_i$, Row vectors: $\ell_i \cdot M_N = \lambda_i \ell_i$, Normalization: $\ell_i \cdot r_i = \delta_{i,j}$.

▶ Then with $Q_i = r_i \otimes \ell_i$,

$$M_N = \sum_i \lambda_i Q_i.$$

Statistics of the Q_i 's

Chalker-Mehlig '98:

Let $M_N(0), M_N(1)$ be independent copies of M_N and set

$$M_N(\theta) = \cos(\theta)M_N(0) + \sin(\theta)M_N(1).$$

Statistics of the Q_i 's

Chalker-Mehlig '98:

Let $M_N(0), M_N(1)$ be independent copies of M_N and set

$$M_N(\theta) = \cos(\theta)M_N(0) + \sin(\theta)M_N(1).$$

Then (at $\theta = 0$), eigenvalue trajectories $(\lambda_i(\theta))_{i \leq N}$ satisfy

$$\mathbb{E}[\partial_{\theta}\lambda_{i}\partial_{\theta}\overline{\lambda_{j}}|\lambda_{i}(0),\lambda_{j}(0)] = \frac{1}{N}\mathbb{E}[\operatorname{Tr}(Q_{i}^{*}Q_{j})|\lambda_{i}(0),\lambda_{j}(0)],$$

$$\frac{1}{N}\mathbb{E}[\operatorname{Tr}(Q_{i}^{*}\cdot Q_{j})|\lambda_{i}(0),\lambda_{j}(0)] \sim \begin{cases} 1-|\lambda_{i}|^{2} \text{ if } i=j,\\ -\frac{1}{N^{2}}\frac{1-\overline{\lambda_{i}}\lambda_{j}}{|\lambda_{i}-\lambda_{i}|^{4}} \text{ if } i\neq j, \end{cases}$$

for typical eigenvalues.

Subsequent Work

- ▶ Burda, Nowak et al. ('99), Burda, Grela, Nowak et al. ('14), Belinshi, Nowak, et al. ('16), Nowak, Tarnowski ('18);
- ▶ Starr, Walters ('14). Corrections to **CM-'98** at ∂ **D**₁.
- ▶ Fyodorov ('17); Bourgade, Dubach ('18). Conditional on λ_i in bulk,

$$\frac{1}{N(1-|\lambda_i^2|)}\mathrm{Tr}[Q_i^*Q_i]$$

scales to $1/\Gamma(2)$.

$$Q_1 \leftrightarrow \lambda_1 = u_1$$
, $Q_2 \leftrightarrow \lambda_2 = v_1$, $Q_3 \leftrightarrow \lambda_3 = u_2$, $Q_4 \leftrightarrow \lambda_4 = v_2$, etc.

$$Q_1 \leftrightarrow \lambda_1 = u_1$$
, $Q_2 \leftrightarrow \lambda_2 = v_1$, $Q_3 \leftrightarrow \lambda_3 = u_2$, $Q_4 \leftrightarrow \lambda_4 = v_2$, etc.

$$Q_1 \leftrightarrow \lambda_1 = u_1$$
, $Q_2 \leftrightarrow \lambda_2 = v_1$, $Q_3 \leftrightarrow \lambda_3 = u_2$, $Q_4 \leftrightarrow \lambda_4 = v_2$, etc.

$$Q_1 \leftrightarrow \lambda_1 = u_1$$
, $Q_2 \leftrightarrow \lambda_2 = v_1$, $Q_3 \leftrightarrow \lambda_3 = u_2$, $Q_4 \leftrightarrow \lambda_4 = v_2$, etc.

Example: $\rho_N(\sigma; \boldsymbol{u}, \boldsymbol{v})$ where $\sigma = (132)$

$$Q_1 \leftrightarrow \lambda_1 = u_1$$
, $Q_2 \leftrightarrow \lambda_2 = v_1$, $Q_3 \leftrightarrow \lambda_3 = u_2$, $Q_4 \leftrightarrow \lambda_4 = v_2$, etc.

 $Q_1^* Q_2 \qquad Q_3^* Q_4 \qquad Q_5^* Q_6$

 $\operatorname{Tr}[Q_1^*Q_2$

$$Q_1 \leftrightarrow \lambda_1 = u_1, \ Q_2 \leftrightarrow \lambda_2 = v_1, \ Q_3 \leftrightarrow \lambda_3 = u_2, \ Q_4 \leftrightarrow \lambda_4 = v_2, \ \text{etc.}$$

$$Q_1 \leftrightarrow \lambda_1 = u_1$$
, $Q_2 \leftrightarrow \lambda_2 = v_1$, $Q_3 \leftrightarrow \lambda_3 = u_2$, $Q_4 \leftrightarrow \lambda_4 = v_2$, etc.

$$Q_1 \leftrightarrow \lambda_1 = u_1$$
, $Q_2 \leftrightarrow \lambda_2 = v_1$, $Q_3 \leftrightarrow \lambda_3 = u_2$, $Q_4 \leftrightarrow \lambda_4 = v_2$, etc.

$$Q_1 \leftrightarrow \lambda_1 = u_1, \ Q_2 \leftrightarrow \lambda_2 = v_1, \ Q_3 \leftrightarrow \lambda_3 = u_2, \ Q_4 \leftrightarrow \lambda_4 = v_2, \ \text{etc.}$$

▶ Given $k \in \mathbb{N}$ and $\mathbf{u}, \mathbf{v} \in \mathbf{D}^{\mathbf{k}}$, we condition on

$$\{\lambda_{2j-1} = u_j, \lambda_{2j} = v_j \text{ for } j \in \{1, \dots k\}\}$$

▶ λ_j has associated Q_j .

▶ Given $k \in \mathbb{N}$ and $\mathbf{u}, \mathbf{v} \in \mathbf{D^k}$, we condition on

$$\{\lambda_{2j-1} = u_j, \lambda_{2j} = v_j \text{ for } j \in \{1, \dots k\}\}$$

- λ_j has associated Q_j .
- ▶ Let S_A be the permutation group on A.
- ▶ If $\mathcal{L} \in \mathcal{S}_A$ is a cycle on A let

$$\hat{
ho}(\mathcal{L}) = \mathsf{N}^{|A|-1} \mathrm{Tr} \left[\prod_{j \in A} Q_{2j-1}^* Q_{2j}
ight].$$

with cycle order imposed.

▶ Given $k \in \mathbb{N}$ and $\mathbf{u}, \mathbf{v} \in \mathbf{D}^{\mathbf{k}}$, we condition on

$$\{\lambda_{2j-1} = u_j, \lambda_{2j} = v_j \text{ for } j \in \{1, \dots k\}\}$$

- $\triangleright \lambda_j$ has associated Q_j .
- ▶ Let S_A be the permutation group on A.
- ▶ If $\mathcal{L} \in \mathcal{S}_A$ is a cycle on A let

$$\hat{
ho}(\mathcal{L}) = \mathsf{N}^{|A|-1} \mathrm{Tr} \left[\prod_{j \in A} Q_{2j-1}^* Q_{2j}
ight].$$

with cycle order imposed.

▶ For $\sigma \in S_k$ set

$$\hat{\rho}(\sigma) = \prod_{\mathcal{L} \text{ cycles of } \sigma} \hat{\rho}(\mathcal{L}).$$

Finally given $\mathbf{u}, \mathbf{v} \in \mathbf{D^k}$,

$$\rho_N(\sigma) = \mathbb{E}[\hat{\rho}(\sigma)|\lambda_{2j-1} = u_j, \lambda_{2j} = v_j \text{ for } j \in \{1, \dots k\}].$$

Computing $\lim_N \rho_N(\sigma)$, High Level

Let
$$R(z) = (M_N - z)^{-1}$$

- 1. $Q_i = \oint_{|z-\lambda_i|=\varepsilon} \mathrm{d}z R(z)$. Corresponding $\hat{\rho}(\sigma)$, get $\bar{\rho}(\sigma)$ with (Q_{2i}) 's replaced by $R(w_i)$'s (respectively Q_{2i+1} 's by $R(w_{2i+1})$'s).
- 2. Write $M_N = U_N T_N U_N^*$. **Main Point:** For Ginibre, can change of variables $M_N \to (U_N, T_N)$ so that

$$T_{N} = \begin{bmatrix} \lambda_{1} & - & \vec{v}_{1} & - & - \\ 0 & \lambda_{2} & \vec{v}_{2} & - & - \\ 0 & 0 & \lambda_{3} & \vec{v}_{3} & - \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \lambda_{N} \end{bmatrix}$$

and $\vec{v_i} \in \mathbb{C}^{N-i}$ are Gaussian with i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1/N)$ entries.

3. Define the $N - j \times N - j$ matrix

$$T^{(j)} = \begin{bmatrix} \lambda_j & - & \vec{v}_j & - & - \\ 0 & \lambda_{j+1} & \vec{v}_{j+1} & - & - \\ 0 & 0 & \lambda_{j+2} & \vec{v}_{j+2} & - \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \lambda_N \end{bmatrix}$$

4. Let $\bar{\rho}^{(j)}(\sigma)$ be analog of $\bar{\rho}(\sigma)$ with $T^{(j)}$ replacing T_N .

3. Define the $N - j \times N - j$ matrix

$$T^{(j)} = \begin{bmatrix} \lambda_j & - & \vec{v}_j & - & - \\ 0 & \lambda_{j+1} & \vec{v}_{j+1} & - & - \\ 0 & 0 & \lambda_{j+2} & \vec{v}_{j+2} & - \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \lambda_N \end{bmatrix}$$

- 4. Let $\bar{\rho}^{(j)}(\sigma)$ be analog of $\bar{\rho}(\sigma)$ with $T^{(j)}$ replacing T_N .
- 5. Viewing $\sigma \mapsto \bar{\rho}^{(j)}(\sigma)$ as a random vector, get

$$\mathbb{E}[\bar{\rho}^{(j)}(\sigma)|\underline{\lambda},(\vec{v_i})_{i\geq j}] = A_{\lambda_j}\cdot\bar{\rho}^{(j+1)}(\sigma)$$

where A_{λ} is an explicit matrix depending on λ , z_i 's, w_i 's.

3. Define the $N - j \times N - j$ matrix

$$T^{(j)} = \begin{bmatrix} \lambda_j & - & \vec{v}_j & - & - \\ 0 & \lambda_{j+1} & \vec{v}_{j+1} & - & - \\ 0 & 0 & \lambda_{j+2} & \vec{v}_{j+2} & - \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \lambda_N \end{bmatrix}$$

- 4. Let $\bar{\rho}^{(j)}(\sigma)$ be analog of $\bar{\rho}(\sigma)$ with $T^{(j)}$ replacing T_N .
- 5. Viewing $\sigma \mapsto \bar{\rho}^{(j)}(\sigma)$ as a random vector, get

$$\mathbb{E}[\bar{\rho}^{(j)}(\sigma)|\underline{\lambda},(\vec{v_i})_{i\geq j}] = A_{\lambda_j}\cdot\bar{\rho}^{(j+1)}(\sigma)$$

where A_{λ} is an explicit matrix depending on λ , z_i 's, w_i 's.

6. Hence

$$\mathbb{E}[\bar{\rho}(\sigma)|\underline{\lambda}] = A_{\lambda_1} \cdots A_{\lambda_N}(\mathrm{Id}, \sigma).$$

7. Study asymptotics.

▶ Non Crossing Condition: For $\sigma, \tau \in \mathcal{S}_k$ say $\sigma \preceq \tau$ if every cycle of σ is a subcycle of τ and $\tau \circ \sigma^{-1}$ has at most one nontrivial cycle. Let \unlhd be transitive closure of \preceq .

▶ Non Crossing Condition: For $\sigma, \tau \in \mathcal{S}_k$ say $\sigma \preceq \tau$ if every cycle of σ is a subcycle of τ and $\tau \circ \sigma^{-1}$ has at most one nontrivial cycle. Let \unlhd be transitive closure of \preceq .

(123456)

▶ Non Crossing Condition: For $\sigma, \tau \in \mathcal{S}_k$ say $\sigma \leq \tau$ if every cycle of σ is a subcycle of τ and $\tau \circ \sigma^{-1}$ has at most one nontrivial cycle. Let \triangleleft be transitive closure of \preceq .

▶ Non Crossing Condition: For $\sigma, \tau \in \mathcal{S}_k$ say $\sigma \leq \tau$ if every cycle of σ is a subcycle of τ and $\tau \circ \sigma^{-1}$ has at most one nontrivial cycle. Let \triangleleft be transitive closure of \preceq .

Let

$$h(u,v) = \frac{1}{\pi} \int_{\mathbf{D}_1} \frac{1}{(\overline{\lambda} - \overline{u})(\lambda - v)} d^2 \lambda = \log \left(\frac{1 - \overline{u}v}{|u - v|^2} \right).$$

and note that

$$\partial_u \partial_{\overline{v}} \exp(h(u,v)) = \partial_u \partial_{\overline{v}} \frac{1 - \overline{u}v}{|u - v|^2} = -\frac{1 - \overline{u}v}{|u - v|^4}$$

▶ This is **exactly** the correlation $\rho_2(u, v)$ Chalker and Mehlig computed.

$$\mathfrak{h}_{\sigma} = \sum_{\alpha=1}^{\kappa} h(u_{\alpha}, v_{\sigma^{-1}(\alpha)}).$$

$$\mathfrak{n}_{\sigma,\tau}(\mathbf{u},\mathbf{v}) = \frac{1}{\pi} \int_{\mathbf{D}_1} \prod_{\alpha: \tau \circ \sigma^{-1} \neq \alpha} \frac{1}{(\overline{\lambda} - \overline{u_\alpha})} \frac{1}{(\lambda - \nu_{\sigma^{-1}(\alpha)})} d^2 \lambda \qquad (1)$$

The matrix $\mathfrak{N} \equiv \mathfrak{N}(\mathbf{u}, \mathbf{v})$ is then defined by

$$\mathfrak{N}(\sigma,\tau) = \begin{cases} \mathfrak{h}_{\sigma}(\mathbf{u},\mathbf{v}) & \text{if } \sigma = \tau, \\ \mathfrak{n}_{\sigma,\tau}(\mathbf{u},\mathbf{v}) & \text{if } \sigma \prec \tau, \\ 0 & \text{otherwise.} \end{cases}$$
 (2)

Note that

$$\mathfrak{N} = \sum_{\sigma \in \mathcal{S}_{k}} \mathfrak{h}_{\sigma} \mathfrak{q}_{\sigma}$$

Macroscopic Limit

For $\mathbf{u}, \mathbf{v} \in \mathbf{D}_1^k$, define

$$Dist(\mathbf{u}, \mathbf{v}) := \min_{\alpha, \beta \in [k]} \{ |u_{\alpha} - v_{\beta}| \} \wedge \min_{\alpha, \beta \in [k], \ \alpha \neq \beta} \{ |u_{\alpha} - u_{\beta}|, |v_{\alpha} - v_{\beta}| \} \wedge \min_{\alpha \in [k]} \{ 1 - |u_{\alpha}|, 1 - |v_{\alpha}| \}.$$
(3)

Theorem

For every $\sigma \in \mathcal{S}_k$ and every $\mathbf{u}, \mathbf{v} \in \mathbf{D}_1^k$ such that $\mathrm{Dist}(\mathbf{u}, \mathbf{v}) > 0$, the limit

$$\rho(\sigma; \mathbf{u}, \mathbf{v}) := \lim_{N \to \infty} \rho_N(\sigma; \mathbf{u}, \mathbf{v})$$

exists.

Moreover

- 1. $\rho(\sigma) = \partial_{\mathbf{u}} \partial_{\overline{\mathbf{v}}} e^{\mathfrak{N}}(Id, \sigma),$
- 2. The q_{σ} are rational in $\overline{\mathbf{u}}, \mathbf{v}$ (!).
- 3. $\rho(\sigma)$ factors over cycles.

Correlation Structure of Cycle

Using spectral decomposition

$$\mathsf{e}^\mathfrak{N} = \sum_{\sigma \in \mathcal{S}_k} \mathsf{e}^{\mathfrak{h}_\sigma} \mathfrak{q}_\sigma$$

and rationality of q_{σ} ,

$$\partial_{\mathbf{u}}\partial_{\overline{\mathbf{v}}}e^{\mathfrak{N}}=\sum_{\sigma\in\mathcal{S}_k}[\partial_{\mathbf{u}}\partial_{\overline{\mathbf{v}}}e^{\mathfrak{h}_\sigma}]\mathfrak{q}_\sigma.$$

•

$$[\partial_{\mathbf{u}}\partial_{\overline{\mathbf{v}}}e^{\mathfrak{h}_{\sigma}}]=\prod_{\alpha\in[k]}\rho_{2}(u_{\sigma(\alpha)},v_{\alpha})$$

Reminder:

$$\rho_2(z,w) = -\frac{1 - \overline{z}w}{|z - w|^4}$$

Corollary

There are two families of polynomials $(\mathfrak{R}_{\sigma},\mathfrak{L}_{\sigma})_{\sigma\in\mathcal{S}_{\ell}}$ in $\mathbf{u},\mathbf{v}\in\mathbb{C}^{k}\times\mathbb{C}^{k}$, homogeneous of degree of degree $\binom{k-1}{2}$, so that

$$\rho(C_k; \mathbf{u}, \mathbf{v}) = \sum_{\sigma \leq C_k} \frac{\mathfrak{R}_{\sigma}(\overline{\mathbf{u}}, \mathbf{v}) \mathfrak{L}_{C_k \circ \sigma^{-1}}(\overline{\mathbf{u}}, \sigma^{-1}(\mathbf{v}))}{V_k(\overline{\mathbf{u}})^2 V_k(\mathbf{v})^2} \prod_{\alpha \in [k]} \rho_2(u_{\sigma(\alpha)}, v_{\alpha}),$$

Example:

$$\begin{split} & \rho_4(u_1, v_1, u_2, v_2) = \\ & \frac{1}{(\overline{u_1} - \overline{u_2})^2 (v_1 - v_2)^2} \Big[\rho_2(u_1, v_1) \rho_2(u_2, v_2) - \rho_2(u_1, v_2) \rho_2(u_2, v_1) \Big] \,. \end{split}$$

