Eigenvectors of Non-Hermitian Random Matrices

Guillaume Dubach
Courant Institute, NYU

October 8th, 2017
Random Matrices, Integrability and Complex Systems
Yad Hashmona, Judean Hills, Israel

Joint work with Paul Bourgade

Contents

1. Definitions and motivations

2. Results
3. Proofs
4. Simulations

Ginibre Ensemble

Ginibre ensemble: $N \times N$ matrix $G=G_{N}$, with i.i.d. entries

$$
G_{i, j} \stackrel{d}{=} \mathscr{N}\left(0, \frac{1}{N} I d\right) .
$$

Ginibre Ensemble

Ginibre ensemble: $N \times N$ matrix $G=G_{N}$, with i.i.d. entries

$$
G_{i, j} \stackrel{d}{=} \mathscr{N}\left(0, \frac{1}{N} I d\right) .
$$

Eigenvalues are almost surely distinct. We diagonalize

$$
G=P \Delta P^{-1}, \quad \Delta=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

Ginibre Ensemble

Ginibre ensemble: $N \times N$ matrix $G=G_{N}$, with i.i.d. entries

$$
G_{i, j} \stackrel{d}{=} \mathscr{N}\left(0, \frac{1}{N} I d\right) .
$$

Eigenvalues are almost surely distinct. We diagonalize

$$
G=P \Delta P^{-1}, \quad \Delta=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

Circular law: convergence of the empirical measure to the uniform measure on $\mathbb{D}=D(0,1)$.

$$
\sum_{k=1}^{N} \delta_{\lambda_{k}} \xrightarrow{d} \frac{1}{\pi} \mathbf{1}_{\mathbb{D}}
$$

Circular Law

Ginibre, $\mathrm{N}=5000$

Overlaps of eigenvectors

L_{k} : left eigenvector for λ_{k}.
R_{k} : right eigenvector for λ_{k}.

Overlaps of eigenvectors

L_{k} : left eigenvector for λ_{k}. $\quad R_{k}$: right eigenvector for λ_{k}.
Chosen such that $\left\langle L_{i} \mid R_{j}\right\rangle=\delta_{i, j}$.

Overlaps of eigenvectors

L_{k} : left eigenvector for λ_{k}. $\quad R_{k}$: right eigenvector for λ_{k}.
Chosen such that $\left\langle L_{i} \mid R_{j}\right\rangle=\delta_{i, j}$.
Matrix of overlaps:

$$
\mathscr{O}_{i j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle
$$

(Chalker \& Mehlig '98, Walters \& Starr '14).

Overlaps of eigenvectors

L_{k} : left eigenvector for λ_{k}. $\quad R_{k}$: right eigenvector for λ_{k}.
Chosen such that $\left\langle L_{i} \mid R_{j}\right\rangle=\delta_{i, j}$.
Matrix of overlaps:

$$
\mathscr{O}_{i j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle
$$

(Chalker \& Mehlig '98, Walters \& Starr '14).

- In a sense, simplest homogeneous non trivial quantity.

Overlaps of eigenvectors

L_{k} : left eigenvector for λ_{k}. $\quad R_{k}$: right eigenvector for λ_{k}.
Chosen such that $\left\langle L_{i} \mid R_{j}\right\rangle=\delta_{i, j}$.
Matrix of overlaps:

$$
\mathscr{O}_{i j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle
$$

(Chalker \& Mehlig '98, Walters \& Starr '14).

- In a sense, simplest homogeneous non trivial quantity.
- Quantify the stability of the spectrum.

If $\lambda_{i}(t)$ is an eigenvalue of $G+t E$,

$$
\mathscr{O}_{i i}=\lim _{t \rightarrow 0} \sup _{\|E\|=1} t^{-1}\left|\lambda_{i}(t)-\lambda_{i}\right|
$$

Overlaps of eigenvectors

L_{k} : left eigenvector for λ_{k}. $\quad R_{k}$: right eigenvector for λ_{k}.
Chosen such that $\left\langle L_{i} \mid R_{j}\right\rangle=\delta_{i, j}$.
Matrix of overlaps:

$$
\mathscr{O}_{i j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle
$$

(Chalker \& Mehlig '98, Walters \& Starr '14).

- In a sense, simplest homogeneous non trivial quantity.
- Quantify the stability of the spectrum. If $\lambda_{i}(t)$ is an eigenvalue of $G+t E$,

$$
\mathscr{O}_{i i}=\lim _{t \rightarrow 0} \sup _{\|E\|=1} t^{-1}\left|\lambda_{i}(t)-\lambda_{i}\right|
$$

- Appear naturally in Ginibre Evolution.

Ginibre Evolution

Non-hermitian analog of Dyson Brownian Motion,

$$
\mathrm{d} G_{i j}(t)=\frac{\mathrm{d} B_{i j}(t)}{\sqrt{N}}-\frac{1}{2} G_{i j}(t) \mathrm{d} t .
$$

Ginibre Evolution

Non-hermitian analog of Dyson Brownian Motion,

$$
\mathrm{d} G_{i j}(t)=\frac{\mathrm{d} B_{i j}(t)}{\sqrt{N}}-\frac{1}{2} G_{i j}(t) \mathrm{d} t .
$$

Eigenvalues are correlated martingales without extra drift.

$$
\mathrm{d} \lambda_{k}(t)=\mathrm{d} M_{k}(t)-\frac{1}{2} \lambda_{k}(t) \mathrm{d} t
$$

Ginibre Evolution

Non-hermitian analog of Dyson Brownian Motion,

$$
\mathrm{d} G_{i j}(t)=\frac{\mathrm{d} B_{i j}(t)}{\sqrt{N}}-\frac{1}{2} G_{i j}(t) \mathrm{d} t .
$$

Eigenvalues are correlated martingales without extra drift.

$$
\mathrm{d} \lambda_{k}(t)=\mathrm{d} M_{k}(t)-\frac{1}{2} \lambda_{k}(t) \mathrm{d} t
$$

with the bracket

$$
\mathrm{d}\left\langle M_{i}, \overline{M_{j}}\right\rangle_{t}=\mathscr{O}_{i, j}(t) \frac{\mathrm{d} t}{N} .
$$

Ginibre Evolution (Movie)

Main features : repulsion, slow 'speed' at the edge, surprising apparent correlation of some pairs or triplets of eigenvalues.

(Click to play video.)

First properties of overlaps

L_{k} : left eigenvector for $\lambda_{k} . \quad R_{k}$: right eigenvector for λ_{k}.
Chosen such that $\left\langle L_{i} \mid R_{j}\right\rangle=\delta_{i, j}$.
Matrix of overlaps:

$$
\mathscr{O}_{i, j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle
$$

First properties of overlaps

L_{k} : left eigenvector for $\lambda_{k} . \quad R_{k}$: right eigenvector for λ_{k}.
Chosen such that $\left\langle L_{i} \mid R_{j}\right\rangle=\delta_{i, j}$.
Matrix of overlaps:

$$
\mathscr{O}_{i, j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle
$$

Remark
For any $i, \mathscr{O}_{i, i}=\left\|R_{i}\right\|^{2}\left\|L_{i}\right\|^{2} \geq 1$ and $\sum_{j} \mathscr{O}_{i, j}=1$.

First properties of overlaps

L_{k} : left eigenvector for $\lambda_{k} . \quad R_{k}$: right eigenvector for λ_{k}.
Chosen such that $\left\langle L_{i} \mid R_{j}\right\rangle=\delta_{i, j}$.
Matrix of overlaps:

$$
\mathscr{O}_{i, j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle
$$

Remark
For any $i, \mathscr{O}_{i, i}=\left\|R_{i}\right\|^{2}\left\|L_{i}\right\|^{2} \geq 1$ and $\sum_{j} \mathscr{O}_{i, j}=1$.

Proposition

The matrix \mathscr{O} is hermitian positive-definite with

$$
\min \operatorname{Spec} \mathscr{O}=1
$$

Contents

1. Definitions and motivations

2. Results
3. Proofs

4. Simulations

Diagonal Overlaps

Chalker \& Mehlig computed the first moment of diagonal overlaps.

Diagonal Overlaps

Chalker \& Mehlig computed the first moment of diagonal overlaps.

Proposition (Chalker and Mehlig)

Conditionally on $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left(z_{1}, \ldots, z_{N}\right)$,

$$
\mathbb{E}\left(\mathscr{O}_{11} \mid \lambda=\mathbf{z}\right)=\prod_{n=2}^{N}\left(1+\frac{1}{N\left|z_{1}-z_{n}\right|^{2}}\right)
$$

Diagonal Overlaps

Chalker \& Mehlig computed the first moment of diagonal overlaps.

Proposition (Chalker and Mehlig)

Conditionally on $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left(z_{1}, \ldots, z_{N}\right)$,

$$
\mathbb{E}\left(\mathscr{O}_{11} \mid \lambda=\mathbf{z}\right)=\prod_{n=2}^{N}\left(1+\frac{1}{N\left|z_{1}-z_{n}\right|^{2}}\right)
$$

There is actually an explicit and simple decomposition of the quenched distribution of $\mathscr{O}_{1,1}$.

Diagonal Overlaps

Theorem (Bourgade, D.)
Conditionally on $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left(z_{1}, \ldots, z_{N}\right)$,

Diagonal Overlaps

Theorem (Bourgade, D.)
Conditionally on $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left(z_{1}, \ldots, z_{N}\right)$,

$$
\mathscr{O}_{11} \stackrel{(\mathrm{~d})}{=} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|z_{1}-z_{k}\right|^{2}}\right),
$$

where X_{k} 's are independent standard complex Gaussian.

Diagonal Overlaps

Theorem (Bourgade, D.)
Conditionally on $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left(z_{1}, \ldots, z_{N}\right)$,

$$
\mathscr{O}_{11} \stackrel{(\mathrm{~d})}{=} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|z_{1}-z_{k}\right|^{2}}\right),
$$

where X_{k} 's are independent standard complex Gaussian.
This enables to determine a limit distribution.

Diagonal Overlaps

Theorem (Bourgade, D.)
Conditionally on $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left(z_{1}, \ldots, z_{N}\right)$,

$$
\mathscr{O}_{11} \stackrel{(\mathrm{~d})}{=} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|z_{1}-z_{k}\right|^{2}}\right)
$$

where X_{k} 's are independent standard complex Gaussian.
This enables to determine a limit distribution.
Theorem (Bourgade, D.)
Conditionally on $\lambda_{1}=z_{1} \in \mathbb{D}$,

$$
N^{-1} \mathscr{O}_{1,1} \xrightarrow{d}\left(1-\left|z_{1}\right|^{2}\right) \gamma_{2}^{-1}
$$

The γ_{2}^{-1} distribution

Figure: Density of $\frac{1}{\gamma_{2}}$, where γ_{2} has density $\frac{1}{\Gamma(2)} t e^{-t} \mathbf{1}_{\mathbb{R}_{+}}$.

The γ_{2}^{-1} distribution

Figure: Density of $\frac{1}{\gamma_{2}}$, where γ_{2} has density $\frac{1}{\Gamma(2)} t e^{-t} \mathbf{1}_{\mathbb{R}_{+}}$.

Heavy-tail distribution (no second moment).

Off-diagonal overlaps

$$
z_{1}, z_{2} \in \mathbb{D}, \quad \omega=\left|z_{1}-z_{2}\right| N^{1 / 2}
$$

Off-diagonal overlaps

$z_{1}, z_{2} \in \mathbb{D}, \quad \omega=\left|z_{1}-z_{2}\right| N^{1 / 2}$.
Mesoscopic scales : $\omega \sim N^{\epsilon}, \epsilon \in\left(0, \frac{1}{2}\right)$.

Off-diagonal overlaps

$z_{1}, z_{2} \in \mathbb{D}, \quad \omega=\left|z_{1}-z_{2}\right| N^{1 / 2}$.
Mesoscopic scales : $\omega \sim N^{\epsilon}, \epsilon \in\left(0, \frac{1}{2}\right)$.
Theorem (Bourgade, D.)
Conditionally on $\left(\lambda_{1}, \lambda_{2}\right)=\left(z_{1}, z_{2}\right) \in \mathbb{D}^{2}$ at mesoscopic distance,

Off-diagonal overlaps

$z_{1}, z_{2} \in \mathbb{D}, \quad \omega=\left|z_{1}-z_{2}\right| N^{1 / 2}$.
Mesoscopic scales : $\omega \sim N^{\epsilon}, \epsilon \in\left(0, \frac{1}{2}\right)$.
Theorem (Bourgade, D.)
Conditionally on $\left(\lambda_{1}, \lambda_{2}\right)=\left(z_{1}, z_{2}\right) \in \mathbb{D}^{2}$ at mesoscopic distance,

$$
\begin{aligned}
\mathbb{E}\left(\mathscr{O}_{12}\right) & \sim-\frac{1-z_{1} \overline{z_{2}}}{N\left|z_{1}-z_{2}\right|^{4}} \\
\mathbb{E}\left(\left|\mathscr{O}_{12}\right|^{2}\right) & \sim \frac{\left(1-\left|z_{1}\right|^{2}\right)^{2}}{\left|z_{1}-z_{2}\right|^{4}} \\
\mathbb{E}\left(\mathscr{O}_{11} \mathscr{O}_{22}\right) & \sim \mathbb{E}\left(\mathscr{O}_{11}\right) \mathbb{E}\left(\mathscr{O}_{22}\right) .
\end{aligned}
$$

(First term was known by Chalker \& Mehlig)

Microscopic Scale

More importantly, one can go down to $\omega \sim 1$.

Microscopic Scale

More importantly, one can go down to $\omega \sim 1$.
Theorem (Bourgade, D.)
Conditionally on $\left(\lambda_{1}, \lambda_{2}\right)=\left(z_{1}, z_{2}\right) \in \mathbb{D}^{2}$ at microscopic distance,

Microscopic Scale

More importantly, one can go down to $\omega \sim 1$.
Theorem (Bourgade, D.)
Conditionally on $\left(\lambda_{1}, \lambda_{2}\right)=\left(z_{1}, z_{2}\right) \in \mathbb{D}^{2}$ at microscopic distance,

$$
\begin{aligned}
\mathbb{E}\left(\mathscr{O}_{12}\right) & \sim-N \frac{1-z_{1} \overline{z_{2}}}{|\omega|^{4}} \times \frac{1-\left(1+|\omega|^{2}\right) e^{-|\omega|^{2}}}{1-e^{-|\omega|^{2}}} \\
\mathbb{E}\left(\left|\mathscr{O}_{12}\right|^{2}\right) & \sim \frac{N^{2}\left(1-\left|z_{1}\right|^{2}\right)^{2}}{|\omega|^{4}} \\
\mathbb{E}\left(\mathscr{O}_{11} \mathscr{O}_{22}\right) & \sim \frac{N^{2}\left(1-\left|z_{1}\right|^{2}\right)^{2}}{|\omega|^{4}} \times \frac{1+|\omega|^{4}-e^{-|\omega|^{2}}}{1-e^{-|\omega|^{2}}} .
\end{aligned}
$$

Microscopic Scale

More importantly, one can go down to $\omega \sim 1$.
Theorem (Bourgade, D.)
Conditionally on $\left(\lambda_{1}, \lambda_{2}\right)=\left(z_{1}, z_{2}\right) \in \mathbb{D}^{2}$ at microscopic distance,

$$
\begin{aligned}
& \mathbb{E}\left(\mathscr{O}_{12}\right) \sim-N \frac{1-z_{1} \overline{\bar{z}_{2}}}{|\omega|^{4}} \times \frac{1-\left(1+|\omega|^{2}\right) e^{-|\omega|^{2}}}{1-e^{-|\omega|^{2}}} \\
& \mathbb{E}\left(\left|\mathscr{O}_{12}\right|^{2}\right) \sim \frac{N^{2}\left(1-\left|z_{1}\right|^{2}\right)^{2}}{|\omega|^{4}} \\
& \mathbb{E}\left(\mathscr{O}_{11} \mathscr{O}_{22}\right) \sim \frac{N^{2}\left(1-\left|z_{1}\right|^{2}\right)^{2}}{|\omega|^{4}} \times \frac{1+|\omega|^{4}-e^{-|\omega|^{2}}}{1-e^{-|\omega|^{2}}} .
\end{aligned}
$$

(First term conjectured by Chalker \& Mehlig)

Contents

1. Definitions and motivations

2. Results

3. Proofs

4. Simulations

Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)
Conditionally on $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{D}^{N}$,

$$
\mathscr{O}_{11} \stackrel{(\mathrm{~d})}{=} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|z_{1}-z_{k}\right|^{2}}\right)
$$

where X_{k} 's are independent standard complex Gaussian.

Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)
Conditionally on $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{D}^{N}$,

$$
\mathscr{O}_{11} \stackrel{(\mathrm{~d})}{=} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|z_{1}-z_{k}\right|^{2}}\right)
$$

where X_{k} 's are independent standard complex Gaussian.
To prove it, begin with Schur Decomposition :

$$
G=U T U^{*}
$$

Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)
Conditionally on $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{D}^{N}$,

$$
\mathscr{O}_{11} \stackrel{(\mathrm{~d})}{=} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|z_{1}-z_{k}\right|^{2}}\right)
$$

where X_{k} 's are independent standard complex Gaussian.
To prove it, begin with Schur Decomposition :

$$
G=U T U^{*}
$$

Remark

T is independent on U.

Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)
Conditionally on $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{D}^{N}$,

$$
\mathscr{O}_{11} \stackrel{(\mathrm{~d})}{=} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|z_{1}-z_{k}\right|^{2}}\right),
$$

where X_{k} 's are independent standard complex Gaussian.
To prove it, begin with Schur Decomposition :

$$
G=U T U^{*}
$$

Remark

T is independent on U.
The overlaps of the matrix T are the same as those of $G!$

Schur Decomposition :

$$
G=U T U^{*}
$$

Schur Decomposition :

$$
G=U T U^{*}
$$

with

$$
T=\left(\begin{array}{cccc}
\lambda_{1} & T_{12} & \ldots & T_{1 N} \\
0 & \lambda_{2} & \ldots & T_{2 N} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{N}
\end{array}\right)
$$

Schur Decomposition:

$$
G=U T U^{*}
$$

with

$$
T=\left(\begin{array}{cccc}
\lambda_{1} & T_{12} & \ldots & T_{1 N} \\
0 & \lambda_{2} & \ldots & T_{2 N} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{N}
\end{array}\right)
$$

Proposition (Mehta)

Schur Decomposition :

$$
G=U T U^{*}
$$

with

$$
T=\left(\begin{array}{cccc}
\lambda_{1} & T_{12} & \ldots & T_{1 N} \\
0 & \lambda_{2} & \ldots & T_{2 N} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{N}
\end{array}\right)
$$

Proposition (Mehta)

The diagonal of T is independent of the upper-diagonal.

Schur Decomposition :

$$
G=U T U^{*}
$$

with

$$
T=\left(\begin{array}{cccc}
\lambda_{1} & T_{12} & \ldots & T_{1 N} \\
0 & \lambda_{2} & \ldots & T_{2 N} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{N}
\end{array}\right)
$$

Proposition (Mehta)

The diagonal of T is independent of the upper-diagonal.
The upper-diagonal entries of T are i.i.d. $\mathscr{N}\left(0, \frac{1}{N}\right)$.

$$
T=\left(\begin{array}{cccc}
\lambda_{1} & T_{12} & \ldots & T_{1 N} \\
0 & \lambda_{2} & \ldots & T_{2 N} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{N}
\end{array}\right)
$$

$$
T=\left(\begin{array}{cccc}
\lambda_{1} & T_{12} & \ldots & T_{1 N} \\
0 & \lambda_{2} & \ldots & T_{2 N} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{N}
\end{array}\right)
$$

Right-eigenvectors of $T: R_{1}=(1,0, \ldots, 0) \quad R_{2}=(a, 1,0, \ldots, 0)$.

$$
T=\left(\begin{array}{cccc}
\lambda_{1} & T_{12} & \ldots & T_{1 N} \\
0 & \lambda_{2} & \ldots & T_{2 N} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{N}
\end{array}\right)
$$

Right-eigenvectors of $T: R_{1}=(1,0, \ldots, 0) \quad R_{2}=(a, 1,0, \ldots, 0)$.
Left-eigenvectors of $T: L_{1}=\left(b_{1}, \ldots, b_{N}\right) \quad L_{2}=\left(d_{1}, \ldots, d_{N}\right)$.

$$
T=\left(\begin{array}{cccc}
\lambda_{1} & T_{12} & \ldots & T_{1 N} \\
0 & \lambda_{2} & \ldots & T_{2 N} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{N}
\end{array}\right)
$$

Right-eigenvectors of $T: R_{1}=(1,0, \ldots, 0) \quad R_{2}=(a, 1,0, \ldots, 0)$.
Left-eigenvectors of $T: L_{1}=\left(b_{1}, \ldots, b_{N}\right) \quad L_{2}=\left(d_{1}, \ldots, d_{N}\right)$.

$$
\text { with } a=-b_{2}, \quad b_{1}=1, \quad b_{i}=\frac{1}{\lambda_{1}-\lambda_{i}} \sum_{k=1}^{i-1} b_{k} T_{k i} \quad \text { for } i \geq 2
$$

$$
\text { and } d_{1}=0, \quad d_{2}=1, \quad d_{i}=\frac{1}{\lambda_{2}-\lambda_{i}} \sum_{k=1}^{i-1} d_{k} T_{k i} \quad \text { for } i \geq 3
$$

So, as $\mathscr{O}_{i, j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle$,

So, as $\mathscr{O}_{i, j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle$,

$$
\mathscr{O}_{11}=\sum_{i=1}^{N}\left|b_{i}\right|^{2}, \quad \mathscr{O}_{12}=-\overline{b_{2}} \sum_{i=2}^{N} b_{i} \overline{d_{i}}, \quad \mathscr{O}_{22}=\left(1+\left|b_{2}\right|^{2}\right) \sum_{i=2}^{N}\left|d_{i}\right|^{2} .
$$

So, as $\mathscr{O}_{i, j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle$,
$\mathscr{O}_{11}=\sum_{i=1}^{N}\left|b_{i}\right|^{2}, \quad \mathscr{O}_{12}=-\overline{b_{2}} \sum_{i=2}^{N} b_{i} \bar{d}_{i}, \quad \mathscr{O}_{22}=\left(1+\left|b_{2}\right|^{2}\right) \sum_{i=2}^{N}\left|d_{i}\right|^{2}$.
Define for $d \leq N$,

$$
b^{(d)}=\left(b_{1}, \ldots, b_{d}\right)
$$

So, as $\mathscr{O}_{i, j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle$,
$\mathscr{O}_{11}=\sum_{i=1}^{N}\left|b_{i}\right|^{2}, \quad \mathscr{O}_{12}=-\overline{b_{2}} \sum_{i=2}^{N} b_{i} \overline{d_{i}}, \quad \mathscr{O}_{22}=\left(1+\left|b_{2}\right|^{2}\right) \sum_{i=2}^{N}\left|d_{i}\right|^{2}$.
Define for $d \leq N$,

$$
\begin{gathered}
b^{(d)}=\left(b_{1}, \ldots, b_{d}\right) \\
\mathscr{O}_{11}^{(d)}=\sum_{i=1}^{d}\left|b_{i}\right|^{2}=\left\|b^{(d)}\right\|^{2}
\end{gathered}
$$

So, as $\mathscr{O}_{i, j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle$,
$\mathscr{O}_{11}=\sum_{i=1}^{N}\left|b_{i}\right|^{2}, \quad \mathscr{O}_{12}=-\overline{b_{2}} \sum_{i=2}^{N} b_{i} \overline{d_{i}}, \quad \mathscr{O}_{22}=\left(1+\left|b_{2}\right|^{2}\right) \sum_{i=2}^{N}\left|d_{i}\right|^{2}$.
Define for $d \leq N$,

$$
\begin{gathered}
b^{(d)}=\left(b_{1}, \ldots, b_{d}\right) \\
\mathscr{O}_{11}^{(d)}=\sum_{i=1}^{d}\left|b_{i}\right|^{2}=\left\|b^{(d)}\right\|^{2} \\
T_{d+1}=\left(T_{1, d+1}, T_{2, d+1}, \ldots, T_{d, d+1}\right)
\end{gathered}
$$

So, as $\mathscr{O}_{i, j}=\left\langle R_{j} \mid R_{i}\right\rangle\left\langle L_{j} \mid L_{i}\right\rangle$,
$\mathscr{O}_{11}=\sum_{i=1}^{N}\left|b_{i}\right|^{2}, \quad \mathscr{O}_{12}=-\overline{b_{2}} \sum_{i=2}^{N} b_{i} \overline{d_{i}}, \quad \mathscr{O}_{22}=\left(1+\left|b_{2}\right|^{2}\right) \sum_{i=2}^{N}\left|d_{i}\right|^{2}$.
Define for $d \leq N$,

$$
\begin{gathered}
b^{(d)}=\left(b_{1}, \ldots, b_{d}\right) \\
\mathscr{O}_{11}^{(d)}=\sum_{i=1}^{d}\left|b_{i}\right|^{2}=\left\|b^{(d)}\right\|^{2} \\
T_{d+1}=\left(T_{1, d+1}, T_{2, d+1}, \ldots, T_{d, d+1}\right)
\end{gathered}
$$

In this way,

$$
b_{d+1}=\frac{1}{\lambda_{1}-\lambda_{d+1}} b^{(d)} \cdot T_{d+1} .
$$

Recurrence

Initial and final terms : $\mathscr{O}_{1,1}^{(1)}=\left|b_{1}\right|^{2}=1, \quad \mathscr{O}_{1,1}^{(N)}=\mathscr{O}_{1,1}$.

Recurrence

Initial and final terms : $\mathscr{O}_{1,1}^{(1)}=\left|b_{1}\right|^{2}=1, \quad \mathscr{O}_{1,1}^{(N)}=\mathscr{O}_{1,1}$.

$$
\begin{aligned}
\mathscr{O}_{1,1}^{(d+1)}=\mathscr{O}_{1,1}^{(d)}+\left|b_{d+1}\right|^{2} & =\mathscr{O}_{1,1}^{(d)}+\frac{1}{\left|\lambda_{1}-\lambda_{d+1}\right|^{2}}\left|b^{(d)} \cdot T_{d+1}\right| \\
& =\mathscr{O}_{1,1}^{(d)}\left(1+\frac{1}{\left|\lambda_{1}-\lambda_{d+1}\right|^{2}} \frac{\left|b^{(d)} \cdot T_{d+1}\right|^{2}}{\left\|b^{(d)}\right\|^{2}}\right)
\end{aligned}
$$

Recurrence

Initial and final terms : $\mathscr{O}_{1,1}^{(1)}=\left|b_{1}\right|^{2}=1, \quad \mathscr{O}_{1,1}^{(N)}=\mathscr{O}_{1,1}$.

$$
\begin{aligned}
\mathscr{O}_{1,1}^{(d+1)}=\mathscr{O}_{1,1}^{(d)}+\left|b_{d+1}\right|^{2} & =\mathscr{O}_{1,1}^{(d)}+\frac{1}{\left|\lambda_{1}-\lambda_{d+1}\right|^{2}}\left|b^{(d)} \cdot T_{d+1}\right| \\
& =\mathscr{O}_{1,1}^{(d)}\left(1+\frac{1}{\left|\lambda_{1}-\lambda_{d+1}\right|^{2}} \frac{\left|b^{(d)} \cdot T_{d+1}\right|^{2}}{\left\|b^{(d)}\right\|^{2}}\right)
\end{aligned}
$$

Note that

$$
X_{d+1}=\frac{\sqrt{N} b^{(d)} \cdot T_{d+1}}{\left\|b^{(d)}\right\|} \stackrel{d}{=} \mathscr{N}(0,1)
$$

is independent from $\mathscr{O}_{1,1}^{(d)}$. This yields the decomposition.

Theorem (Limit distribution)

Conditioned on $\lambda_{1}=z_{1} \in \mathbb{D}$,

$$
N^{-1} \mathscr{O}_{1,1} \rightarrow\left(1-\left|z_{1}\right|^{2}\right) \gamma_{2}^{-1}
$$

Theorem (Limit distribution)

Conditioned on $\lambda_{1}=z_{1} \in \mathbb{D}$,

$$
N^{-1} \mathscr{O}_{1,1} \rightarrow\left(1-\left|z_{1}\right|^{2}\right) \gamma_{2}^{-1}
$$

Theorem (Kostlan I)

$\left\{N\left|\lambda_{1}\right|^{2}, \ldots, N\left|\lambda_{N}\right|^{2}\right\}$ are distributed as independent $\left\{\gamma_{1}, \ldots, \gamma_{N}\right\}$ variables.

Theorem (Limit distribution)

Conditioned on $\lambda_{1}=z_{1} \in \mathbb{D}$,

$$
N^{-1} \mathscr{O}_{1,1} \rightarrow\left(1-\left|z_{1}\right|^{2}\right) \gamma_{2}^{-1}
$$

Theorem (Kostlan I)

$\left\{N\left|\lambda_{1}\right|^{2}, \ldots, N\left|\lambda_{N}\right|^{2}\right\}$ are distributed as independent $\left\{\gamma_{1}, \ldots, \gamma_{N}\right\}$ variables.

Theorem (Kostlan II)
Conditioned on $\lambda_{1}=0,\left\{N\left|\lambda_{2}\right|^{2}, \ldots, N\left|\lambda_{N}\right|^{2}\right\}$ are distributed as independent $\left\{\gamma_{2}, \ldots, \gamma_{N}\right\}$ variables.

$\beta-\gamma$ algebra

For $a, b>0$ we recall the following facts. (\perp means independence.)

$\beta-\gamma$ algebra

For $a, b>0$ we recall the following facts. (\perp means independence.)
Fact (1)
If $\gamma_{a} \perp \gamma_{b}$, then $\frac{\gamma_{a}}{\gamma_{a}+\gamma_{b}} \stackrel{d}{=} \beta_{a, b}$.

$\beta-\gamma$ algebra

For $a, b>0$ we recall the following facts. (\perp means independence.)
Fact (1)
If $\gamma_{a} \perp \gamma_{b}$, then $\frac{\gamma_{a}}{\gamma_{a}+\gamma_{b}} \stackrel{d}{=} \beta_{a, b}$.
Fact (2)
If $\beta_{a, b} \perp \beta_{a+b, c}$, then $\beta_{a, b} \beta_{a+b, c} \stackrel{d}{=} \beta_{a, b+c}$.

$\beta-\gamma$ algebra

For $a, b>0$ we recall the following facts. (\perp means independence.)
Fact (1)
If $\gamma_{a} \perp \gamma_{b}$, then $\frac{\gamma_{a}}{\gamma_{a}+\gamma_{b}} \stackrel{d}{=} \beta_{a, b}$.
Fact (2)
If $\beta_{a, b} \perp \beta_{a+b, c}$, then $\beta_{a, b} \beta_{a+b, c} \stackrel{d}{=} \beta_{a, b+c}$.
Fact (3)
$N \beta_{a, N} \xrightarrow[N \rightarrow \infty]{d} \gamma_{a}$.

Conditioned on $\lambda_{1}=0$, we can use the $\beta-\gamma$ algebra.

$$
\frac{1}{N} \mathscr{O}_{11} \stackrel{(\mathrm{~d})}{=} \frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|\lambda_{1}-\lambda_{k}\right|^{2}}\right)
$$

Conditioned on $\lambda_{1}=0$, we can use the $\beta-\gamma$ algebra.

$$
\begin{aligned}
\frac{1}{N} \mathscr{O}_{11} & \stackrel{(\mathrm{~d})}{=} \frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|\lambda_{1}-\lambda_{k}\right|^{2}}\right) \\
& =\frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|\lambda_{k}\right|^{2}}\right)
\end{aligned}
$$

Conditioned on $\lambda_{1}=0$, we can use the $\beta-\gamma$ algebra.

$$
\begin{aligned}
\frac{1}{N} \mathscr{O}_{11} & \stackrel{(\mathrm{~d})}{=} \frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|\lambda_{1}-\lambda_{k}\right|^{2}}\right) \\
& =\frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|\lambda_{k}\right|^{2}}\right) \\
& \stackrel{(\mathrm{d})}{=} \frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\gamma_{1}}{\gamma_{k}}\right)
\end{aligned}
$$

Conditioned on $\lambda_{1}=0$, we can use the $\beta-\gamma$ algebra.

$$
\begin{aligned}
\frac{1}{N} \mathscr{O}_{11} & \stackrel{(\mathrm{~d})}{=} \frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|\lambda_{1}-\lambda_{k}\right|^{2}}\right) \\
& =\frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|\lambda_{k}\right|^{2}}\right) \\
& \stackrel{(\mathrm{d})}{=} \frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\gamma_{1}}{\gamma_{k}}\right) \\
& \stackrel{(\mathrm{d})}{=} \frac{1}{N} \prod_{k=2}^{N} \beta_{k, 1}^{-1}
\end{aligned}
$$

Conditioned on $\lambda_{1}=0$, we can use the $\beta-\gamma$ algebra.

$$
\begin{aligned}
\frac{1}{N} \mathscr{O}_{11} & \stackrel{(\mathrm{~d})}{=} \frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|\lambda_{1}-\lambda_{k}\right|^{2}}\right) \\
& =\frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|\lambda_{k}\right|^{2}}\right) \\
& \stackrel{(\mathrm{d})}{=} \frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\gamma_{1}}{\gamma_{k}}\right) \\
& \stackrel{(\mathrm{d})}{=} \frac{1}{N} \prod_{k=2}^{N} \beta_{k, 1}^{-1} \\
& \stackrel{(\mathrm{~d})}{=} \frac{1}{N} \beta_{2, N-1}^{-1}
\end{aligned}
$$

Conditioned on $\lambda_{1}=0$, we can use the $\beta-\gamma$ algebra.

$$
\begin{aligned}
\frac{1}{N} \mathscr{O}_{11} & \stackrel{(\mathrm{~d})}{=} \frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|\lambda_{1}-\lambda_{k}\right|^{2}}\right) \\
& =\frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\left|X_{k}\right|^{2}}{N\left|\lambda_{k}\right|^{2}}\right) \\
& \stackrel{(d)}{=} \frac{1}{N} \prod_{k=2}^{N}\left(1+\frac{\gamma_{1}}{\gamma_{k}}\right) \\
& \stackrel{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \beta_{k, 1}^{-1} \\
& \stackrel{(d)}{=} \frac{1}{N} \beta_{2, N-1}^{-1} \xrightarrow[N \rightarrow \infty]{d} \gamma_{2}^{-1} .
\end{aligned}
$$

$$
\frac{\mathscr{O}_{11}}{N} \xrightarrow[N \rightarrow \infty]{d} \gamma_{2}^{-1}
$$

This is the limiting heavy-tail distribution that Chalker and Mehlig predicted.

$$
\frac{\mathscr{O}_{11}}{N} \xrightarrow[N \rightarrow \infty]{d} \gamma_{2}^{-1}
$$

This is the limiting heavy-tail distribution that Chalker and Mehlig predicted.

Figure: Fact-checking over 100 Ginibre 600×600 matrices .

How do we condition on $\lambda_{1}=z_{1}$ anywhere in the bulk ?

How do we condition on $\lambda_{1}=z_{1}$ anywhere in the bulk ? Short-range vs long-range.

Figure: Domains of integration within the bulk

Short-range vs long-range

Assume χ is smooth enough and has compact support.

Short-range vs long-range

Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta=\theta(N)=N^{-1 / 2+\epsilon}$.

$$
\chi_{\theta}(z)=\chi\left(z \theta^{-1}\right)
$$

Short-range vs long-range

Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta=\theta(N)=N^{-1 / 2+\epsilon}$.

$$
\begin{array}{r}
\chi_{\theta}(z)=\chi\left(z \theta^{-1}\right) \\
\mathscr{O}_{11} \stackrel{(\mathrm{~d})}{=} \prod_{n=2}^{N}\left(1+\frac{\left|X_{n}\right|^{2}}{N\left|\lambda_{1}-\lambda_{n}\right|^{2}}\right)
\end{array}
$$

Short-range vs long-range

Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta=\theta(N)=N^{-1 / 2+\epsilon}$.

$$
\begin{gathered}
\chi_{\theta}(z)=\chi\left(z \theta^{-1}\right) \\
\mathscr{O}_{11} \stackrel{(\mathrm{~d})}{=} \prod_{n=2}^{N}\left(1+\frac{\left|X_{n}\right|^{2}}{N\left|\lambda_{1}-\lambda_{n}\right|^{2}}\right) \\
=e^{\left(\sum_{n=2}^{N} \log \left(1+\frac{\left|X_{n}\right|^{2}}{N\left|\lambda_{1}-\lambda_{n}\right|^{2}}\right) \chi_{\theta}\left(\lambda_{n}\right)\right)} \\
\times e^{\left(\sum_{n=2}^{N} \log \left(1+\frac{\left|x_{n}\right|^{2}}{N\left|\lambda_{1}-\lambda_{n}\right|^{2}}\right)\left(1-\chi_{\theta}\left(\lambda_{n}\right)\right)\right)}
\end{gathered}
$$

Short-range vs long-range

Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta=\theta(N)=N^{-1 / 2+\epsilon}$.

$$
\begin{gathered}
\chi_{\theta}(z)=\chi\left(z \theta^{-1}\right) \\
\mathscr{O}_{11} \stackrel{(\mathrm{~d})}{=} \prod_{n=2}^{N}\left(1+\frac{\left|X_{n}\right|^{2}}{N\left|\lambda_{1}-\lambda_{n}\right|^{2}}\right) \\
=e^{\left(\sum_{n=2}^{N} \log \left(1+\frac{\left|x_{n}\right|^{2}}{N\left|\lambda_{1}-\lambda_{n}\right|^{2}}\right) \chi_{\theta}\left(\lambda_{n}\right)\right)} \\
=\times e^{\left(\sum_{n=2}^{N} \log \left(1+\frac{\left|x_{n}\right|^{2}}{N\left|\lambda_{1}-\lambda_{n}\right|^{2}}\right)\left(1-\chi_{\theta}\left(\lambda_{n}\right)\right)\right)} \\
=\mathscr{O}_{1,1}^{\text {short }} \mathscr{O}_{1,1}^{\text {long }}
\end{gathered}
$$

At any ϵ-mesoscopic scale, i.e. $\theta=N^{-1 / 2+\epsilon}$,

At any ϵ-mesoscopic scale, i.e. $\theta=N^{-1 / 2+\epsilon}$,

- The short-range term doesn't depend on z_{1} (invariance of local statistics).

At any ϵ-mesoscopic scale, i.e. $\theta=N^{-1 / 2+\epsilon}$,

- The short-range term doesn't depend on z_{1} (invariance of local statistics). We compare it to the $z_{1}=0$ case and find

$$
\mathscr{O}_{1,1}^{\text {short }} \sim N^{2 \epsilon} \gamma_{2}^{-1}
$$

At any ϵ-mesoscopic scale, i.e. $\theta=N^{-1 / 2+\epsilon}$,

- The short-range term doesn't depend on z_{1} (invariance of local statistics). We compare it to the $z_{1}=0$ case and find

$$
\mathscr{O}_{1,1}^{\text {short }} \sim N^{2 \epsilon} \gamma_{2}^{-1}
$$

- The long-range term is deterministic (rigidity).

At any ϵ-mesoscopic scale, i.e. $\theta=N^{-1 / 2+\epsilon}$,

- The short-range term doesn't depend on z_{1} (invariance of local statistics). We compare it to the $z_{1}=0$ case and find

$$
\mathscr{O}_{1,1}^{\text {short }} \sim N^{2 \epsilon} \gamma_{2}^{-1}
$$

- The long-range term is deterministic (rigidity). Compute an integral and

$$
\mathscr{O}_{1,1}^{\text {long }} \sim N^{1-2 \epsilon}\left(1-\left|z_{1}\right|^{2}\right)
$$

At any ϵ-mesoscopic scale, i.e. $\theta=N^{-1 / 2+\epsilon}$,

- The short-range term doesn't depend on z_{1} (invariance of local statistics). We compare it to the $z_{1}=0$ case and find

$$
\mathscr{O}_{1,1}^{\text {short }} \sim N^{2 \epsilon} \gamma_{2}^{-1}
$$

- The long-range term is deterministic (rigidity). Compute an integral and

$$
\begin{aligned}
\mathscr{O}_{1,1}^{\text {long }} \sim N^{1-2 \epsilon}\left(1-\left|z_{1}\right|^{2}\right) . \\
\mathscr{O}_{1,1}=\mathscr{O}_{1,1}^{\text {short }} \mathscr{O}_{1,1}^{\text {long }}
\end{aligned}
$$

At any ϵ-mesoscopic scale, i.e. $\theta=N^{-1 / 2+\epsilon}$,

- The short-range term doesn't depend on z_{1} (invariance of local statistics). We compare it to the $z_{1}=0$ case and find

$$
\mathscr{O}_{1,1}^{\text {short }} \sim N^{2 \epsilon} \gamma_{2}^{-1}
$$

- The long-range term is deterministic (rigidity). Compute an integral and

$$
\begin{gathered}
\mathscr{O}_{1,1}^{\text {long }} \sim N^{1-2 \epsilon}\left(1-\left|z_{1}\right|^{2}\right) \\
\mathscr{O}_{1,1}=\mathscr{O}_{1,1}^{\text {short }} \mathscr{O}_{1,1}^{\text {long }} \sim N\left(1-\left|z_{1}\right|^{2}\right) \gamma_{2}^{-1}
\end{gathered}
$$

At any ϵ-mesoscopic scale, i.e. $\theta=N^{-1 / 2+\epsilon}$,

- The short-range term doesn't depend on z_{1} (invariance of local statistics). We compare it to the $z_{1}=0$ case and find

$$
\mathscr{O}_{1,1}^{\text {short }} \sim N^{2 \epsilon} \gamma_{2}^{-1}
$$

- The long-range term is deterministic (rigidity). Compute an integral and

$$
\begin{gathered}
\mathscr{O}_{1,1}^{\text {long }} \sim N^{1-2 \epsilon}\left(1-\left|z_{1}\right|^{2}\right) \\
\mathscr{O}_{1,1}=\mathscr{O}_{1,1}^{\text {short }} \mathscr{O}_{1,1}^{\text {long }} \sim N\left(1-\left|z_{1}\right|^{2}\right) \gamma_{2}^{-1} .
\end{gathered}
$$

This gives the limit distribution of diagonal overlaps in the bulk.

Off-diagonal overlaps

No limit distribution known, but explicit formulae for the first and second moments conditionally on $\lambda_{1}, \ldots, \lambda_{N} \in \mathbb{D}^{N}$.

Off-diagonal overlaps

No limit distribution known, but explicit formulae for the first and second moments conditionally on $\lambda_{1}, \ldots, \lambda_{N} \in \mathbb{D}^{N}$. We can integrate them, separating short-range from long-range terms.

Figure: Domains of integration for the off-diagonal overlaps

Contents

1. Definitions and motivations

2. Results
3. Proofs

4. Simulations

Universality of the γ_{2}^{-1} limit (conjecture)

Figure: Histograms for i.i.d. non Gaussian entries.

Universality of the γ_{2}^{-1} limit (conjecture)

Figure: Histograms for i.i.d. non Gaussian entries.
Complex Bernoulli - Complex Uniform.

Ginibre Evolution: Color Movie

Consequence: average velocity of eigenvalues $\sim 1-|\lambda|^{2}$, but the distribution has a heavy tail.

Ginibre Evolution: Color Movie

Consequence: average velocity of eigenvalues $\sim 1-|\lambda|^{2}$, but the distribution has a heavy tail.

Colors are given according to the relative size of the associated diagonal overlaps : black, blue, magenta and red.
(Click to play video.)
Ginibre Evolution, $\mathrm{N}=700$

References

Seminal articles by Chalker \& Mehlig :

- Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles.
- Eigenvector statistics in non-Hermitian random matrix ensembles.

References

Seminal articles by Chalker \& Mehlig :

- Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles.
- Eigenvector statistics in non-Hermitian random matrix ensembles.

Recent related works: Fyodorov (2017), Crawford \& Rosenthal (2018), Nowak \& Tarnowski (2018), Grela \& Warchoł (2018).

References

Seminal articles by Chalker \& Mehlig :

- Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles.
- Eigenvector statistics in non-Hermitian random matrix ensembles.

Recent related works: Fyodorov (2017), Crawford \& Rosenthal (2018), Nowak \& Tarnowski (2018), Grela \& Warchoł (2018).

This presentation is based on The distribution of overlaps between eigenvectors of Ginibre matrices.
(Bourgade \& D., 2018)

