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Definitions and motivations Results Proofs Simulations

Ginibre Ensemble

Ginibre ensemble: N × N matrix G = GN , with i.i.d. entries

Gi ,j
d
= N

(
0,

1

N
Id

)
.

Eigenvalues are almost surely distinct. We diagonalize

G = P∆P−1, ∆ = Diag(λ1, . . . , λN).

Circular law: convergence of the empirical measure to the uniform
measure on D = D(0, 1).

N∑
k=1

δλk
d→ 1

π
1D.
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Circular Law
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Definitions and motivations Results Proofs Simulations

Overlaps of eigenvectors

Lk : left eigenvector for λk . Rk : right eigenvector for λk .

Chosen such that 〈Li | Rj〉 = δi ,j .

Matrix of overlaps:

Oij = 〈Rj | Ri 〉〈Lj | Li 〉

(Chalker & Mehlig ’98, Walters & Starr ’14).

• In a sense, simplest homogeneous non trivial quantity.

• Quantify the stability of the spectrum.
If λi (t) is an eigenvalue of G + tE ,

Oii = lim
t→0

sup
‖E‖=1

t−1|λi (t)− λi |.

• Appear naturally in Ginibre Evolution.
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Definitions and motivations Results Proofs Simulations

Ginibre Evolution

Non-hermitian analog of Dyson Brownian Motion,

dGij(t) =
dBij(t)√

N
− 1

2
Gij(t)dt.

Eigenvalues are correlated martingales without extra drift.

dλk(t) = dMk(t)− 1

2
λk(t)dt,

with the bracket

d〈Mi ,Mj〉t = Oi ,j(t)
dt

N
.
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Ginibre Evolution (Movie)

Main features : repulsion, slow ’speed’ at the edge, surprising
apparent correlation of some pairs or triplets of eigenvalues.

(Click to play video.)
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First properties of overlaps

Lk : left eigenvector for λk . Rk : right eigenvector for λk .

Chosen such that 〈Li | Rj〉 = δi ,j .

Matrix of overlaps:

Oi ,j = 〈Rj | Ri 〉〈Lj | Li 〉

Remark

For any i , Oi ,i = ‖Ri‖2‖Li‖2 ≥ 1 and
∑

j Oi ,j = 1.

Proposition

The matrix O is hermitian positive-definite with

minSpecO = 1.
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Definitions and motivations Results Proofs Simulations

Diagonal Overlaps

Chalker & Mehlig computed the first moment of diagonal overlaps.

Proposition (Chalker and Mehlig)

Conditionally on (λ1, . . . , λN) = (z1, . . . , zN),

E (O11|λ = z) =
N∏

n=2

(
1 +

1

N|z1 − zn|2

)
,

There is actually an explicit and simple decomposition of the
quenched distribution of O1,1.
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Diagonal Overlaps

Theorem (Bourgade, D.)

Conditionally on (λ1, . . . , λN) = (z1, . . . , zN),

O11
(d)
=

N∏
k=2

(
1 +

|Xk |2

N|z1 − zk |2

)
,

where Xk ’s are independent standard complex Gaussian.

This enables to determine a limit distribution.

Theorem (Bourgade, D.)

Conditionally on λ1 = z1 ∈ D,

N−1O1,1
d→ (1− |z1|2)γ−1

2
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The γ−1
2 distribution

Figure: Density of 1
γ2

, where γ2 has density 1
Γ(2) te

−t1R+ .

Heavy-tail distribution (no second moment).
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Definitions and motivations Results Proofs Simulations

Off-diagonal overlaps

z1, z2 ∈ D, ω = |z1 − z2|N1/2.

Mesoscopic scales : ω ∼ Nε, ε ∈ (0, 1
2 ).

Theorem (Bourgade, D.)

Conditionally on (λ1, λ2) = (z1, z2) ∈ D2 at mesoscopic distance,

E (O12) ∼ − 1− z1z2

N|z1 − z2|4

E
(
|O12|2

)
∼ (1− |z1|2)2

|z1 − z2|4

E (O11O22) ∼ E (O11)E (O22) .

(First term was known by Chalker & Mehlig)
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Microscopic Scale

More importantly, one can go down to ω ∼ 1.

Theorem (Bourgade, D.)

Conditionally on (λ1, λ2) = (z1, z2) ∈ D2 at microscopic distance,

E (O12) ∼ −N 1− z1z2

|ω|4
× 1− (1 + |ω|2)e−|ω|

2

1− e−|ω|2

E
(
|O12|2

)
∼ N2(1− |z1|2)2

|ω|4

E (O11O22) ∼ N2(1− |z1|2)2

|ω|4
× 1 + |ω|4 − e−|ω|

2

1− e−|ω|2
.

(First term conjectured by Chalker & Mehlig)
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Definitions and motivations Results Proofs Simulations

Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)

Conditionally on (λ1, . . . , λN) = (z1, . . . , zN) ∈ DN ,

O11
(d)
=

N∏
k=2

(
1 +

|Xk |2

N|z1 − zk |2

)
,

where Xk ’s are independent standard complex Gaussian.

To prove it, begin with Schur Decomposition :

G = UTU∗

Remark

T is independent on U.
The overlaps of the matrix T are the same as those of G !
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Definitions and motivations Results Proofs Simulations

Schur Decomposition :
G = UTU∗

with

T =


λ1 T12 . . . T1N

0 λ2 . . . T2N
...

. . .
. . .

...
0 . . . 0 λN

 .

Proposition (Mehta)

The diagonal of T is independent of the upper-diagonal.
The upper-diagonal entries of T are i.i.d. N

(
0, 1

N

)
.
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Definitions and motivations Results Proofs Simulations

T =


λ1 T12 . . . T1N

0 λ2 . . . T2N
...

. . .
. . .

...
0 . . . 0 λN



Right-eigenvectors of T : R1 = (1, 0, . . . , 0) R2 = (a, 1, 0, . . . , 0).

Left-eigenvectors of T : L1 = (b1, . . . , bN) L2 = (d1, . . . , dN).

with a = −b2, b1 = 1, bi =
1

λ1 − λi

i−1∑
k=1

bkTki for i ≥ 2

and d1 = 0, d2 = 1, di =
1

λ2 − λi

i−1∑
k=1

dkTki for i ≥ 3.
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Definitions and motivations Results Proofs Simulations

So, as Oi ,j = 〈Rj | Ri 〉〈Lj | Li 〉,

O11 =
N∑
i=1

|bi |2, O12 = −b2

N∑
i=2

bidi , O22 = (1+|b2|2)
N∑
i=2

|di |2.

Define for d ≤ N,
b(d) = (b1, . . . , bd)

O
(d)
11 =

d∑
i=1

|bi |2 = ‖b(d)‖2

Td+1 = (T1,d+1,T2,d+1, . . . ,Td ,d+1)

In this way,

bd+1 =
1

λ1 − λd+1
b(d).Td+1.
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Definitions and motivations Results Proofs Simulations

Recurrence

Initial and final terms : O
(1)
1,1 = |b1|2 = 1, O

(N)
1,1 = O1,1.

O
(d+1)
1,1 = O

(d)
1,1 + |bd+1|2 = O

(d)
1,1 +

1

|λ1 − λd+1|2
|b(d).Td+1|

= O
(d)
1,1

(
1 +

1

|λ1 − λd+1|2
|b(d).Td+1|2

‖b(d)‖2

)

Note that

Xd+1 =

√
Nb(d).Td+1

‖b(d)‖
d
= N (0, 1)

is independent from O
(d)
1,1 . This yields the decomposition.

�
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Definitions and motivations Results Proofs Simulations

Theorem (Limit distribution)

Conditioned on λ1 = z1 ∈ D,

N−1O1,1 → (1− |z1|2)γ−1
2

Theorem (Kostlan I)

{N|λ1|2, . . . ,N|λN |2} are distributed as independent {γ1, . . . , γN}
variables.

Theorem (Kostlan II)

Conditioned on λ1 = 0, {N|λ2|2, . . . ,N|λN |2} are distributed as
independent {γ2, . . . , γN} variables.
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Definitions and motivations Results Proofs Simulations

β-γ algebra

For a, b > 0 we recall the following facts. (⊥ means independence.)

Fact (1)

If γa ⊥ γb, then γa
γa+γb

d
= βa,b.

Fact (2)

If βa,b ⊥ βa+b,c , then βa,bβa+b,c
d
= βa,b+c .

Fact (3)

Nβa,N
d−−−−→

N→∞
γa.
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Definitions and motivations Results Proofs Simulations

Conditioned on λ1 = 0, we can use the β-γ algebra.

1

N
O11

(d)
=

1

N

N∏
k=2

(
1 +

|Xk |2

N|λ1 − λk |2

)

=
1

N

N∏
k=2

(
1 +

|Xk |2

N|λk |2

)
(d)
=

1

N

N∏
k=2

(
1 +

γ1

γk

)
(d)
=

1

N

N∏
k=2

β−1
k,1

(d)
=

1

N
β−1

2,N−1
d−−−−→

N→∞
γ−1

2 .
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Definitions and motivations Results Proofs Simulations

O11

N
d−−−−→

N→∞
γ−1

2

This is the limiting heavy-tail distribution that Chalker and Mehlig
predicted.

Figure: Fact-checking over 100 Ginibre 600× 600 matrices .
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Definitions and motivations Results Proofs Simulations

How do we condition on λ1 = z1 anywhere in the bulk ?

Short-range vs long-range.

Figure: Domains of integration within the bulk
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Definitions and motivations Results Proofs Simulations

Short-range vs long-range

Assume χ is smooth enough and has compact support.

Mesoscopic
zoom θ = θ(N) = N−1/2+ε.

χθ(z) = χ(zθ−1)

O11
(d)
=

N∏
n=2

(
1 +

|Xn|2

N|λ1 − λn|2

)

= e

(∑N
n=2 log

(
1+ |Xn|2

N|λ1−λn|2

)
χθ(λn)

)

×e

(∑N
n=2 log

(
1+ |Xn|2

N|λ1−λn|2

)
(1−χθ(λn))

)
= Oshort

1,1 O long
1,1
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Short-range vs long-range

Assume χ is smooth enough and has compact support. Mesoscopic
zoom θ = θ(N) = N−1/2+ε.
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At any ε-mesoscopic scale, i.e. θ = N−1/2+ε,

• The short-range term doesn’t depend on z1 (invariance of
local statistics). We compare it to the z1 = 0 case and find

Oshort
1,1 ∼ N2εγ−1

2 .

• The long-range term is deterministic (rigidity). Compute an
integral and

O long
1,1 ∼ N1−2ε(1− |z1|2).

O1,1 = Oshort
1,1 O long

1,1 ∼ N(1− |z1|2)γ−1
2 .

This gives the limit distribution of diagonal overlaps in the bulk.
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Off-diagonal overlaps

No limit distribution known, but explicit formulae for the first and
second moments conditionally on λ1, . . . , λN ∈ DN .

We can
integrate them, separating short-range from long-range terms.

Figure: Domains of integration for the off-diagonal overlaps
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Universality of the γ−1
2 limit (conjecture)

Figure: Histograms for i.i.d. non Gaussian entries.

Complex Bernoulli – Complex Uniform.
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Ginibre Evolution : Color Movie
Consequence: average velocity of eigenvalues ∼ 1− |λ|2, but the
distribution has a heavy tail.

Colors are given according to the relative size of the associated
diagonal overlaps : black, blue, magenta and red.

(Click to play video.)
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