Eigenvectors of Non-Hermitian Random Matrices

Guillaume Dubach Courant Institute, NYU

October 8th, 2017 Random Matrices, Integrability and Complex Systems Yad Hashmona, Judean Hills, Israel

Joint work with Paul Bourgade

Guillaume Dubach Courant Institute, NYU Eigenvectors of Non-Hermitian Random Matrices 1/32

イロト イポト イヨト イヨト

Proofs

Simulations

Contents

1. Definitions and motivations

- 2. Results
- 3. Proofs
- 4. Simulations

Guillaume Dubach Courant Institute, NYU Eigenvectors of Non-Hermitian Random Matrices 2/32

・ロト ・回ト ・ヨト ・ヨト

Simulations

Ginibre Ensemble

Ginibre ensemble: $N \times N$ matrix $G = G_N$, with i.i.d. entries

$$G_{i,j} \stackrel{d}{=} \mathscr{N}\left(0, \frac{1}{N} \mathsf{Id}\right).$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 3 / 32

イロト イロト イヨト イヨト 三日

Proofs

Simulations

Ginibre Ensemble

Ginibre ensemble: $N \times N$ matrix $G = G_N$, with i.i.d. entries

$$G_{i,j} \stackrel{d}{=} \mathscr{N}\left(0, \frac{1}{N} I d\right).$$

Eigenvalues are almost surely distinct. We diagonalize

$$G = P\Delta P^{-1}, \quad \Delta = \text{Diag}(\lambda_1, \ldots, \lambda_N).$$

Guillaume Dubach Courant Institute, NYU Eigenvectors of Non-Hermitian Random Matrices 3/32

Proofs

Simulations

Ginibre Ensemble

Ginibre ensemble: $N \times N$ matrix $G = G_N$, with i.i.d. entries

$$G_{i,j} \stackrel{d}{=} \mathscr{N}\left(0, \frac{1}{N} I d\right).$$

Eigenvalues are almost surely distinct. We diagonalize

$$G = P\Delta P^{-1}, \quad \Delta = \text{Diag}(\lambda_1, \ldots, \lambda_N).$$

Circular law: convergence of the empirical measure to the uniform measure on $\mathbb{D} = D(0, 1)$.

$$\sum_{k=1}^N \delta_{\lambda_k} \stackrel{d}{\to} \frac{1}{\pi} \mathbf{1}_{\mathbb{D}}.$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 3 / 32

Circular Law

Ginibre, N=5000

Guillaume Dubach Courant Institute, NYU

・ロト ・四ト ・ヨト ・ヨト Eigenvectors of Non-Hermitian Random Matrices 4/32

э

Overlaps of eigenvectors

 L_k : left eigenvector for λ_k . R_k : right eigenvector for λ_k .

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 5 / 32

Overlaps of eigenvectors

 L_k : left eigenvector for λ_k . R_k : right eigenvector for λ_k .

Chosen such that $\langle L_i | R_j \rangle = \delta_{i,j}$.

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 5 / 32

Overlaps of eigenvectors

 L_k : left eigenvector for λ_k . R_k : right eigenvector for λ_k . Chosen such that $\langle L_i \mid R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$\mathscr{O}_{ij} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$

(Chalker & Mehlig '98, Walters & Starr '14).

Guillaume Dubach Courant Institute, NYU Eigenvectors of Non-Hermitian Random Matrices 5 / 32

Overlaps of eigenvectors

 L_k : left eigenvector for λ_k . R_k : right eigenvector for λ_k . Chosen such that $\langle L_i \mid R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$\mathscr{O}_{ij} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$

(Chalker & Mehlig '98, Walters & Starr '14).

• In a sense, simplest homogeneous non trivial quantity.

Overlaps of eigenvectors

 L_k : left eigenvector for λ_k . R_k : right eigenvector for λ_k . Chosen such that $\langle L_i \mid R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$\mathscr{O}_{ij} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$

(Chalker & Mehlig '98, Walters & Starr '14).

- In a sense, simplest homogeneous non trivial quantity.
- Quantify the **stability** of the spectrum. If $\lambda_i(t)$ is an eigenvalue of G + tE,

$$\mathscr{O}_{ii} = \lim_{t\to 0} \sup_{\|E\|=1} t^{-1} |\lambda_i(t) - \lambda_i|.$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 5 / 32

Overlaps of eigenvectors

 L_k : left eigenvector for λ_k . R_k : right eigenvector for λ_k . Chosen such that $\langle L_i \mid R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$\mathscr{O}_{ij} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$

(Chalker & Mehlig '98, Walters & Starr '14).

- In a sense, simplest homogeneous non trivial quantity.
- Quantify the **stability** of the spectrum. If $\lambda_i(t)$ is an eigenvalue of G + tE,

$$\mathscr{O}_{ii} = \lim_{t\to 0} \sup_{\|E\|=1} t^{-1} |\lambda_i(t) - \lambda_i|.$$

• Appear naturally in **Ginibre Evolution**.

Simulations

Ginibre Evolution

Non-hermitian analog of Dyson Brownian Motion,

$$\mathrm{d}G_{ij}(t) = \frac{\mathrm{d}B_{ij}(t)}{\sqrt{N}} - \frac{1}{2}G_{ij}(t)\mathrm{d}t.$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 6 / 32

イロト イヨト イヨト イヨト 三日

Proofs

Simulations

Ginibre Evolution

Non-hermitian analog of Dyson Brownian Motion,

$$\mathrm{d}G_{ij}(t) = \frac{\mathrm{d}B_{ij}(t)}{\sqrt{N}} - \frac{1}{2}G_{ij}(t)\mathrm{d}t.$$

Eigenvalues are correlated martingales without extra drift.

$$\mathrm{d}\lambda_k(t) = \mathrm{d}M_k(t) - \frac{1}{2}\lambda_k(t)\mathrm{d}t,$$

Guillaume Dubach Courant Institute, NYU Eig

Eigenvectors of Non-Hermitian Random Matrices 6 / 32

イロト イヨト イヨト イヨト 三日

Proofs

Simulations

Ginibre Evolution

Non-hermitian analog of Dyson Brownian Motion,

$$\mathrm{d}G_{ij}(t) = \frac{\mathrm{d}B_{ij}(t)}{\sqrt{N}} - \frac{1}{2}G_{ij}(t)\mathrm{d}t.$$

Eigenvalues are correlated martingales without extra drift.

$$\mathrm{d}\lambda_k(t) = \mathrm{d}M_k(t) - \frac{1}{2}\lambda_k(t)\mathrm{d}t,$$

with the bracket

$$\mathrm{d}\langle M_i,\overline{M_j}\rangle_t = \mathscr{O}_{i,j}(t) \frac{\mathrm{d}t}{N}$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 6 / 32

イロト イヨト イヨト イヨト 三日

Ginibre Evolution (Movie)

Main features : repulsion, slow 'speed' at the edge, surprising apparent correlation of some pairs or triplets of eigenvalues.

(Click to play video.)

Ginibre Evolution, N=700

Guillaume Dubach Courant Institute, NYU

 Image: Image

First properties of overlaps

 L_k : left eigenvector for λ_k . R_k : right eigenvector for λ_k .

Chosen such that $\langle L_i | R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$\mathscr{O}_{i,j} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 8 / 32

First properties of overlaps

 L_k : left eigenvector for λ_k . R_k : right eigenvector for λ_k . Chosen such that $\langle L_i \mid R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$\mathscr{O}_{i,j} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$

Remark

For any *i*,
$$\mathcal{O}_{i,i} = ||R_i||^2 ||L_i||^2 \ge 1$$
 and $\sum_j \mathcal{O}_{i,j} = 1$.

First properties of overlaps

 L_k : left eigenvector for λ_k . R_k : right eigenvector for λ_k . Chosen such that $\langle L_i | R_i \rangle = \delta_{i,i}$.

Matrix of overlaps:

$$\mathscr{O}_{i,j} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$

Remark

For any *i*,
$$\mathcal{O}_{i,i} = \|R_i\|^2 \|L_i\|^2 \ge 1$$
 and $\sum_j \mathcal{O}_{i,j} = 1$.

Proposition

The matrix \mathcal{O} is hermitian positive-definite with

$$\min \operatorname{Spec} \mathscr{O} = 1.$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 8/32

Proofs

Simulations

Contents

1. Definitions and motivations

- 2. Results
- 3. Proofs
- 4. Simulations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Simulations

Diagonal Overlaps

Chalker & Mehlig computed the first moment of diagonal overlaps.

Guillaume Dubach Courant Institute, NYU

Simulations

Diagonal Overlaps

Chalker & Mehlig computed the first moment of diagonal overlaps.

Proposition (Chalker and Mehlig)

Conditionally on
$$(\lambda_1, \dots, \lambda_N) = (z_1, \dots, z_N)$$
,
 $\mathbb{E}\left(\mathscr{O}_{11} | \lambda = \mathbf{z}\right) = \prod_{n=2}^N \left(1 + \frac{1}{N|z_1 - z_n|^2}\right)$,

Guillaume Dubach Courant Institute, NYU

Proofs

Simulations

Diagonal Overlaps

Chalker & Mehlig computed the first moment of diagonal overlaps.

Proposition (Chalker and Mehlig)

Conditionally on
$$(\lambda_1, \dots, \lambda_N) = (z_1, \dots, z_N)$$
,
 $\mathbb{E}\left(\mathscr{O}_{11} | \lambda = \mathbf{z}\right) = \prod_{n=2}^N \left(1 + \frac{1}{N|z_1 - z_n|^2}\right)$,

There is actually an explicit and simple decomposition of the quenched distribution of $\mathcal{O}_{1,1}$.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Simulations

Diagonal Overlaps

Theorem (Bourgade, D.)

Conditionally on $(\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N)$,

Guillaume Dubach Courant Institute, NYU

Simulations

Diagonal Overlaps

Theorem (Bourgade, D.)

Conditionally on $(\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N)$,

$$\mathscr{O}_{11} \stackrel{\mathrm{(d)}}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),$$

where X_k 's are independent standard complex Gaussian.

Guillaume Dubach Courant Institute, NYU Eigenvectors of Non-Hermitian Random Matrices 11/32

Simulations

Diagonal Overlaps

Theorem (Bourgade, D.)

Conditionally on $(\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N)$,

$$\mathcal{O}_{11} \stackrel{\text{(d)}}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),$$

where X_k 's are independent standard complex Gaussian.

This enables to determine a limit distribution.

イロト イポト イヨト イヨト

Diagonal Overlaps

Theorem (Bourgade, D.)

Conditionally on $(\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N)$,

$$\mathcal{O}_{11} \stackrel{\text{(d)}}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),$$

where X_k 's are independent standard complex Gaussian.

This enables to determine a limit distribution.

Theorem (Bourgade, D.)

Conditionally on $\lambda_1 = z_1 \in \mathbb{D}$,

$$N^{-1} \mathscr{O}_{1,1} \stackrel{d}{
ightarrow} (1 - |z_1|^2) \gamma_2^{-1}$$

э

The γ_2^{-1} distribution

Figure: Density of $\frac{1}{\gamma_2}$, where γ_2 has density $\frac{1}{\Gamma(2)}te^{-t}\mathbf{1}_{\mathbb{R}_+}$.

Guillaume Dubach Courant Institute, NYU

ヘロン ヘロン ヘビン ヘビン Eigenvectors of Non-Hermitian Random Matrices 12/32

Definitions and motivations

Results

Proofs

Simulations

The γ_2^{-1} distribution

Figure: Density of $\frac{1}{\gamma_2}$, where γ_2 has density $\frac{1}{\Gamma(2)}te^{-t}\mathbf{1}_{\mathbb{R}_+}$.

Heavy-tail distribution (no second moment).

Off-diagonal overlaps

$$z_1, z_2 \in \mathbb{D}, \quad \omega = |z_1 - z_2| N^{1/2}.$$

Guillaume Dubach Courant Institute, NYU

・ロト ・回ト ・ヨト ・ヨト Eigenvectors of Non-Hermitian Random Matrices 13/32

æ

Off-diagonal overlaps

 $z_1, z_2 \in \mathbb{D}, \quad \omega = |z_1 - z_2| N^{1/2}.$ Mesoscopic scales : $\omega \sim N^{\epsilon}, \epsilon \in (0, \frac{1}{2}).$

Guillaume Dubach Courant Institute, NYU

イロト 不得 とくほ とくほう Eigenvectors of Non-Hermitian Random Matrices 13/32

Proofs

Simulations

Off-diagonal overlaps

 $z_1, z_2 \in \mathbb{D}, \quad \omega = |z_1 - z_2| N^{1/2}.$ Mesoscopic scales : $\omega \sim N^{\epsilon}, \epsilon \in (0, \frac{1}{2}).$

Theorem (Bourgade, D.)

Conditionally on $(\lambda_1, \lambda_2) = (z_1, z_2) \in \mathbb{D}^2$ at mesoscopic distance,

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 13 / 32

イロト 不得 トイヨト イヨト 二日

Off-diagonal overlaps

 $z_1, z_2 \in \mathbb{D}, \quad \omega = |z_1 - z_2| N^{1/2}.$ Mesoscopic scales : $\omega \sim N^{\epsilon}, \epsilon \in (0, \frac{1}{2}).$

Theorem (Bourgade, D.)

Conditionally on $(\lambda_1, \lambda_2) = (z_1, z_2) \in \mathbb{D}^2$ at mesoscopic distance,

$$\begin{split} \mathbb{E}\left(\mathscr{O}_{12}\right) &\sim -\frac{1-z_1\overline{z_2}}{N|z_1-z_2|^4}\\ \mathbb{E}\left(|\mathscr{O}_{12}|^2\right) &\sim \frac{(1-|z_1|^2)^2}{|z_1-z_2|^4}\\ \mathbb{E}\left(\mathscr{O}_{11}\mathscr{O}_{22}\right) &\sim \mathbb{E}\left(\mathscr{O}_{11}\right)\mathbb{E}\left(\mathscr{O}_{22}\right) \end{split}$$

(First term was known by Chalker & Mehlig)

Eigenvectors of Non-Hermitian Random Matrices 13/32

Microscopic Scale

More importantly, one can go down to $\omega \sim 1$.

Guillaume Dubach Courant Institute, NYU

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト Eigenvectors of Non-Hermitian Random Matrices 14 / 32

э

Proofs

Simulations

Microscopic Scale

More importantly, one can go down to $\omega \sim 1$.

Theorem (Bourgade, D.)

Conditionally on $(\lambda_1,\lambda_2)=(z_1,z_2)\in \mathbb{D}^2$ at microscopic distance,

Guillaume Dubach Courant Institute, NYU

Proofs

Simulations

Microscopic Scale

More importantly, one can go down to $\omega \sim 1$.

Theorem (Bourgade, D.) Conditionally on $(\lambda_1, \lambda_2) = (z_1, z_2) \in \mathbb{D}^2$ at microscopic distance, $\mathbb{E}\left(\mathscr{O}_{12}\right) \sim -N\frac{1-z_1\overline{z_2}}{|\omega|^4} \times \frac{1-(1+|\omega|^2)e^{-|\omega|^2}}{1-e^{-|\omega|^2}}$ $\mathbb{E}\left(|\mathscr{O}_{12}|^2\right) \sim \frac{N^2(1-|z_1|^2)^2}{|_{(j)}|^4}$ $\mathbb{E}\left(\mathscr{O}_{11}\mathscr{O}_{22}\right) \sim \frac{N^2(1-|z_1|^2)^2}{|\omega|^4} \times \frac{1+|\omega|^4-e^{-|\omega|^2}}{1-e^{-|\omega|^2}}.$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 14 / 32
Proofs

Simulations

Microscopic Scale

More importantly, one can go down to $\omega \sim 1$.

Theorem (Bourgade, D.) Conditionally on $(\lambda_1, \lambda_2) = (z_1, z_2) \in \mathbb{D}^2$ at microscopic distance, $\mathbb{E}(\mathcal{O}_{12}) \sim -N \frac{1 - z_1 \overline{z_2}}{|\omega|^4} \times \frac{1 - (1 + |\omega|^2)e^{-|\omega|^2}}{1 - e^{-|\omega|^2}}$ $\mathbb{E}(|\mathcal{O}_{12}|^2) \sim \frac{N^2(1 - |z_1|^2)^2}{|\omega|^4}$ $\mathbb{E}(\mathcal{O}_{11}\mathcal{O}_{22}) \sim \frac{N^2(1 - |z_1|^2)^2}{|\omega|^4} \times \frac{1 + |\omega|^4 - e^{-|\omega|^2}}{1 - e^{-|\omega|^2}}.$

(First term conjectured by Chalker & Mehlig)

Eigenvectors of Non-Hermitian Random Matrices 14 / 32

イロト 不得 とうせい かほとう ほ

Proofs

Simulations

Contents

1. Definitions and motivations

- 2. Results
- 3. Proofs
- 4. Simulations

<ロ> <同> <同> < 回> < 回>

э

Simulations

Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)

Conditionally on $(\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N) \in \mathbb{D}^N$,

$$\mathcal{O}_{11} \stackrel{\text{(d)}}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),$$

where X_k 's are independent standard complex Gaussian.

Guillaume Dubach Courant Institute, NYU Eigenvectors of Non-Hermitian Random Matrices 16 / 32

Proofs

Simulations

Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)

Conditionally on $(\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N) \in \mathbb{D}^N$,

$$\mathcal{O}_{11} \stackrel{\text{(d)}}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),$$

where X_k 's are independent standard complex Gaussian.

To prove it, begin with Schur Decomposition :

 $G = UTU^*$

Guillaume Dubach Courant Institute, NYU

Simulations

Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)

Conditionally on $(\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N) \in \mathbb{D}^N$,

$$\mathcal{O}_{11} \stackrel{\text{(d)}}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),$$

where X_k 's are independent standard complex Gaussian.

To prove it, begin with Schur Decomposition :

$$G = UTU^*$$

Remark

T is independent on U.

Simulations

Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)

Conditionally on $(\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N) \in \mathbb{D}^N$,

$$\mathcal{O}_{11} \stackrel{\text{(d)}}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),$$

where X_k 's are independent standard complex Gaussian.

To prove it, begin with Schur Decomposition :

$$G = UTU^*$$

Remark

T is independent on U. The overlaps of the matrix T are the same as those of G !

Proofs

Simulations

Schur Decomposition :

 $G = UTU^*$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 17 / 32

Schur Decomposition :

 $G = UTU^*$

with

$$T = \begin{pmatrix} \lambda_1 & T_{12} & \dots & T_{1N} \\ 0 & \lambda_2 & \dots & T_{2N} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_N \end{pmatrix}.$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 17 / 32

æ

•

Schur Decomposition :

 $G = UTU^*$

with

$$T = \begin{pmatrix} \lambda_1 & T_{12} & \dots & T_{1N} \\ 0 & \lambda_2 & \dots & T_{2N} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_N \end{pmatrix}$$

Proposition (Mehta)

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 17 / 32

٠

Schur Decomposition :

 $G = UTU^*$

with

$$T = \begin{pmatrix} \lambda_1 & T_{12} & \dots & T_{1N} \\ 0 & \lambda_2 & \dots & T_{2N} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_N \end{pmatrix}$$

Proposition (Mehta)

The diagonal of T is independent of the upper-diagonal.

Guillaume Dubach Courant Institute, NYU

・ロト ・四ト ・モト ・モト Eigenvectors of Non-Hermitian Random Matrices 17 / 32

Proofs

.

イロト 不得 とくほ とくほう

Simulations

Schur Decomposition :

 $G = UTU^*$

with

$$T = \begin{pmatrix} \lambda_1 & T_{12} & \dots & T_{1N} \\ 0 & \lambda_2 & \dots & T_{2N} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_N \end{pmatrix}$$

Proposition (Mehta)

The diagonal of T is independent of the upper-diagonal. The upper-diagonal entries of T are i.i.d. $\mathcal{N}(0, \frac{1}{N})$.

Guillaume Dubach Courant Institute, NYU Eigenvectors of Non-Hermitian Random Matrices 17 / 32

$$T = \begin{pmatrix} \lambda_1 & T_{12} & \dots & T_{1N} \\ 0 & \lambda_2 & \dots & T_{2N} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_N \end{pmatrix}$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 18 / 32

◆□→ ◆□→ ◆注→ ◆注→ □注

$$T = \begin{pmatrix} \lambda_1 & T_{12} & \dots & T_{1N} \\ 0 & \lambda_2 & \dots & T_{2N} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_N \end{pmatrix}$$

Right-eigenvectors of $T: R_1 = (1, 0, ..., 0)$ $R_2 = (a, 1, 0, ..., 0).$

$$T = \begin{pmatrix} \lambda_1 & T_{12} & \dots & T_{1N} \\ 0 & \lambda_2 & \dots & T_{2N} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_N \end{pmatrix}$$

Right-eigenvectors of $T: R_1 = (1, 0, ..., 0) \quad R_2 = (a, 1, 0, ..., 0).$

Left-eigenvectors of T: $L_1 = (b_1, \ldots, b_N)$ $L_2 = (d_1, \ldots, d_N)$.

・ロン ・四 と ・ ヨ と ・ ヨ と

$$T = \begin{pmatrix} \lambda_1 & T_{12} & \dots & T_{1N} \\ 0 & \lambda_2 & \dots & T_{2N} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_N \end{pmatrix}$$

Right-eigenvectors of T: $R_1 = (1, 0, ..., 0)$ $R_2 = (a, 1, 0, ..., 0)$.

Left-eigenvectors of T: $L_1 = (b_1, \ldots, b_N)$ $L_2 = (d_1, \ldots, d_N)$.

with
$$a = -b_2, \ b_1 = 1, \quad b_i = rac{1}{\lambda_1 - \lambda_i} \sum_{k=1}^{i-1} b_k T_{ki} \quad ext{for } i \geq 2$$

and
$$d_1 = 0, \ d_2 = 1, \quad d_i = rac{1}{\lambda_2 - \lambda_i} \sum_{k=1}^{i-1} d_k T_{ki} \quad ext{for } i \geq 3.$$

Guillaume Dubach Courant Institute, NYU

 < □ > < □ > < ≥ > < ≥ > < ≥ > < ≥</td>
 > < </td>

 Eigenvectors of Non-Hermitian Random Matrices
 18/32

Simulations

So, as $\mathscr{O}_{i,j} = \langle R_j | R_i \rangle \langle L_j | L_i \rangle$,

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 19 / 32

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

$$\mathscr{O}_{11} = \sum_{i=1}^{N} |b_i|^2, \quad \mathscr{O}_{12} = -\overline{b_2} \sum_{i=2}^{N} b_i \overline{d_i}, \quad \mathscr{O}_{22} = (1+|b_2|^2) \sum_{i=2}^{N} |d_i|^2.$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 19 / 32

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

$$\mathscr{O}_{11} = \sum_{i=1}^{N} |b_i|^2, \quad \mathscr{O}_{12} = -\overline{b_2} \sum_{i=2}^{N} b_i \overline{d_i}, \quad \mathscr{O}_{22} = (1+|b_2|^2) \sum_{i=2}^{N} |d_i|^2.$$

Define for $d \leq N$,

 $b^{(d)} = (b_1, \ldots, b_d)$

Guillaume Dubach Courant Institute, NYU Eigenvectors of Non-Hermitian Random Matrices 19/32

・ロト ・ ア・ ・ ヨト ・ ヨト

$$\mathscr{O}_{11} = \sum_{i=1}^{N} |b_i|^2, \quad \mathscr{O}_{12} = -\overline{b_2} \sum_{i=2}^{N} b_i \overline{d_i}, \quad \mathscr{O}_{22} = (1+|b_2|^2) \sum_{i=2}^{N} |d_i|^2.$$

Define for $d \leq N$,

$$b^{(d)} = (b_1, \dots, b_d)$$
 $\mathscr{O}_{11}^{(d)} = \sum_{i=1}^d |b_i|^2 = \|b^{(d)}\|^2$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 19 / 32

イロト イロト イヨト イヨト 三日

$$\mathscr{O}_{11} = \sum_{i=1}^{N} |b_i|^2, \quad \mathscr{O}_{12} = -\overline{b_2} \sum_{i=2}^{N} b_i \overline{d_i}, \quad \mathscr{O}_{22} = (1+|b_2|^2) \sum_{i=2}^{N} |d_i|^2.$$

Define for $d \leq N$,

$$b^{(d)} = (b_1, \dots, b_d)$$
 $\mathscr{O}_{11}^{(d)} = \sum_{i=1}^d |b_i|^2 = \|b^{(d)}\|^2$
 $T_{d+1} = (T_{1,d+1}, T_{2,d+1}, \dots, T_{d,d+1})$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 19 / 32

(日)

$$\mathscr{O}_{11} = \sum_{i=1}^{N} |b_i|^2, \quad \mathscr{O}_{12} = -\overline{b_2} \sum_{i=2}^{N} b_i \overline{d_i}, \quad \mathscr{O}_{22} = (1+|b_2|^2) \sum_{i=2}^{N} |d_i|^2.$$

Define for $d \leq N$,

$$b^{(d)} = (b_1, \dots, b_d)$$

 $\mathscr{O}_{11}^{(d)} = \sum_{i=1}^d |b_i|^2 = \|b^{(d)}\|^2$
 $\mathcal{T}_{d+1} = (\mathcal{T}_{1,d+1}, \mathcal{T}_{2,d+1}, \dots, \mathcal{T}_{d,d+1})$

In this way,

$$b_{d+1} = \frac{1}{\lambda_1 - \lambda_{d+1}} b^{(d)} \cdot T_{d+1}.$$

Guillaume Dubach Courant Institute, NYU

・ロト ・回ト ・ヨト ・ヨト Eigenvectors of Non-Hermitian Random Matrices 19/32

Proofs

Simulations

Recurrence

Initial and final terms :
$$\mathscr{O}_{1,1}^{(1)} = |b_1|^2 = 1$$
, $\mathscr{O}_{1,1}^{(N)} = \mathscr{O}_{1,1}$.

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 20 / 32

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三臣

Proofs

Simulations

Recurrence

Initial and final terms :
$$\mathscr{O}_{1,1}^{(1)} = |b_1|^2 = 1$$
, $\mathscr{O}_{1,1}^{(N)} = \mathscr{O}_{1,1}$.

$$egin{aligned} \mathscr{O}_{1,1}^{(d+1)} &= \mathscr{O}_{1,1}^{(d)} + |b_{d+1}|^2 = \mathscr{O}_{1,1}^{(d)} + rac{1}{|\lambda_1 - \lambda_{d+1}|^2} |b^{(d)}. T_{d+1}| \ &= \mathscr{O}_{1,1}^{(d)} \left(1 + rac{1}{|\lambda_1 - \lambda_{d+1}|^2} rac{|b^{(d)}. T_{d+1}|^2}{\|b^{(d)}\|^2}
ight) \end{aligned}$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 20 / 32

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三臣

Proofs

Simulations

Recurrence

Initial and final terms :
$$\mathscr{O}_{1,1}^{(1)} = |b_1|^2 = 1, \quad \mathscr{O}_{1,1}^{(N)} = \mathscr{O}_{1,1}.$$

$$\begin{split} \mathscr{O}_{1,1}^{(d+1)} &= \mathscr{O}_{1,1}^{(d)} + |b_{d+1}|^2 = \mathscr{O}_{1,1}^{(d)} + \frac{1}{|\lambda_1 - \lambda_{d+1}|^2} |b^{(d)} \cdot T_{d+1}| \\ &= \mathscr{O}_{1,1}^{(d)} \left(1 + \frac{1}{|\lambda_1 - \lambda_{d+1}|^2} \frac{|b^{(d)} \cdot T_{d+1}|^2}{\|b^{(d)}\|^2} \right) \end{split}$$

Note that

$$X_{d+1} = \frac{\sqrt{N}b^{(d)} \cdot T_{d+1}}{\|b^{(d)}\|} \stackrel{d}{=} \mathcal{N}(0,1)$$

is independent from $\mathscr{O}_{1,1}^{(d)}.$ This yields the decomposition.

Guillaume Dubach Courant Institute, NYU

 $\langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle$ Eigenvectors of Non-Hermitian Random Matrices 20

20 / 32

Proofs

Simulations

Theorem (Limit distribution)

Conditioned on $\lambda_1 = z_1 \in \mathbb{D}$,

$$N^{-1} \mathscr{O}_{1,1} \to (1 - |z_1|^2) \gamma_2^{-1}$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 21 / 32

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

Proofs

Simulations

Theorem (Limit distribution)

Conditioned on $\lambda_1 = z_1 \in \mathbb{D}$,

$$N^{-1} \mathscr{O}_{1,1} \to (1 - |z_1|^2) \gamma_2^{-1}$$

Theorem (Kostlan I)

 $\{N|\lambda_1|^2, \ldots, N|\lambda_N|^2\}$ are distributed as independent $\{\gamma_1, \ldots, \gamma_N\}$ variables.

・ロン ・雪 と ・ ヨ と ・ ヨ と

Proofs

Simulations

Theorem (Limit distribution)

Conditioned on $\lambda_1 = z_1 \in \mathbb{D}$,

$$N^{-1} \mathscr{O}_{1,1} \to (1 - |z_1|^2) \gamma_2^{-1}$$

Theorem (Kostlan I)

 $\{N|\lambda_1|^2, \ldots, N|\lambda_N|^2\}$ are distributed as independent $\{\gamma_1, \ldots, \gamma_N\}$ variables.

Theorem (Kostlan II)

Conditioned on $\lambda_1 = 0$, $\{N|\lambda_2|^2, \ldots, N|\lambda_N|^2\}$ are distributed as independent $\{\gamma_2, \ldots, \gamma_N\}$ variables.

β - γ algebra

For a, b > 0 we recall the following facts. (\perp means independence.)

Guillaume Dubach Courant Institute, NYU

・ロン ・雪 と ・ ヨ と ・ ヨ と Eigenvectors of Non-Hermitian Random Matrices 22 / 32

э

β - γ algebra

For a, b > 0 we recall the following facts. (\perp means independence.)

Fact (1) If $\gamma_a \perp \gamma_b$, then $\frac{\gamma_a}{\gamma_a + \gamma_b} \stackrel{d}{=} \beta_{a,b}$.

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 22 / 32

イロト イヨト イヨト イヨト 三日

β - γ algebra

For a, b > 0 we recall the following facts. (\perp means independence.)

Fact (1) If $\gamma_a \perp \gamma_b$, then $\frac{\gamma_a}{\gamma_a + \gamma_b} \stackrel{d}{=} \beta_{a,b}$. Fact (2) If $\beta_{a,b} \perp \beta_{a+b,c}$, then $\beta_{a,b}\beta_{a+b,c} \stackrel{d}{=} \beta_{a,b+c}$.

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 22 / 32

β - γ algebra

For a, b > 0 we recall the following facts. (\perp means independence.)

Fact (1) If $\gamma_{a} \perp \gamma_{b}$, then $\frac{\gamma_{a}}{\gamma_{a}+\gamma_{b}} \stackrel{d}{=} \beta_{a,b}$. Fact (2) If $\beta_{a,b} \perp \beta_{a+b,c}$, then $\beta_{a,b}\beta_{a+b,c} \stackrel{d}{=} \beta_{a,b+c}$.

Fact (3)
$$N\beta_{a,N} \xrightarrow[N \to \infty]{d} \gamma_a.$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 22 / 32

イロト イヨト イヨト イヨト 三日

Conditioned on $\lambda_1 = 0$, we can use the β - γ algebra.

$$\frac{1}{N} \mathscr{O}_{11} \quad \stackrel{\mathrm{(d)}}{=} \quad \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_1 - \lambda_k|^2} \right)$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 23 / 32

Proofs

Conditioned on $\lambda_1 = 0$, we can use the β - γ algebra.

$$\begin{split} \frac{1}{N} \mathscr{O}_{11} & \stackrel{\text{(d)}}{=} \quad \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_1 - \lambda_k|^2} \right) \\ & = \quad \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_k|^2} \right) \end{split}$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 23 / 32

Proofs

Conditioned on $\lambda_1 = 0$, we can use the β - γ algebra.

$$\frac{1}{N} \mathscr{O}_{11} \stackrel{\text{(d)}}{=} \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_1 - \lambda_k|^2} \right)$$
$$= \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_k|^2} \right)$$
$$\stackrel{\text{(d)}}{=} \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{\gamma_1}{\gamma_k} \right)$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 23 / 32

Proofs

Conditioned on $\lambda_1 = 0$, we can use the β - γ algebra.

$$\begin{aligned} \frac{1}{N} \mathcal{O}_{11} &\stackrel{\text{(d)}}{=} & \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_1 - \lambda_k|^2} \right) \\ &= & \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_k|^2} \right) \\ &\stackrel{\text{(d)}}{=} & \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{\gamma_1}{\gamma_k} \right) \\ &\stackrel{\text{(d)}}{=} & \frac{1}{N} \prod_{k=2}^{N} \beta_{k,1}^{-1} \end{aligned}$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 23 / 32

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Proofs

Conditioned on $\lambda_1 = 0$, we can use the β - γ algebra.

$$\begin{aligned} \frac{1}{N} \mathcal{O}_{11} & \stackrel{\text{(d)}}{=} & \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_1 - \lambda_k|^2} \right) \\ &= & \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_k|^2} \right) \\ &\stackrel{\text{(d)}}{=} & \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{\gamma_1}{\gamma_k} \right) \\ &\stackrel{\text{(d)}}{=} & \frac{1}{N} \prod_{k=2}^{N} \beta_{k,1}^{-1} \\ &\stackrel{\text{(d)}}{=} & \frac{1}{N} \beta_{2,N-1}^{-1} \end{aligned}$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 23 / 32
Proofs

Conditioned on $\lambda_1 = 0$, we can use the β - γ algebra.

$$\begin{split} \frac{1}{N} \mathscr{O}_{11} & \stackrel{\text{(d)}}{=} & \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N |\lambda_1 - \lambda_k|^2} \right) \\ &= & \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N |\lambda_k|^2} \right) \\ &\stackrel{\text{(d)}}{=} & \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{\gamma_1}{\gamma_k} \right) \\ &\stackrel{\text{(d)}}{=} & \frac{1}{N} \prod_{k=2}^{N} \beta_{k,1}^{-1} \\ &\stackrel{\text{(d)}}{=} & \frac{1}{N} \beta_{2,N-1}^{-1} \xrightarrow{d} \gamma_2^{-1}. \end{split}$$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 23 / 32

This is the limiting heavy-tail distribution that Chalker and Mehlig predicted.

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 24 / 32

イロト イヨト イヨト イヨト 三日

This is the limiting heavy-tail distribution that Chalker and Mehlig predicted.

Figure: Fact-checking over 100 Ginibre 600×600 matrices .

Guillaume Dubach Courant Institute, NYU

Proofs

Simulations

How do we condition on $\lambda_1 = z_1$ anywhere in the bulk ?

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 25 / 32

How do we condition on $\lambda_1 = z_1$ anywhere in the bulk ? Short-range vs long-range.

Figure: Domains of integration within the bulk

Guillaume Dubach Courant Institute, NYU

・ロン ・雪 と ・ ヨ と ・ ヨ と Eigenvectors of Non-Hermitian Random Matrices 25 / 32

Short-range vs long-range

Assume χ is smooth enough and has compact support.

Guillaume Dubach Courant Institute, NYU

・ロト ・回ト ・ヨト ・ヨト Eigenvectors of Non-Hermitian Random Matrices 26 / 32

Short-range vs long-range

Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta = \theta(N) = N^{-1/2+\epsilon}$.

$$\chi_{\theta}(z) = \chi(z\theta^{-1})$$

Guillaume Dubach Courant Institute, NYU

・ロン ・雪 と ・ ヨ と ・ ヨ と Eigenvectors of Non-Hermitian Random Matrices 26 / 32

-

Short-range vs long-range

Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta = \theta(N) = N^{-1/2+\epsilon}$.

$$\chi_{\theta}(z) = \chi(z\theta^{-1})$$

$$\mathscr{O}_{11} \stackrel{(\mathrm{d})}{=} \prod_{n=2}^{N} \left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2} \right)$$

Guillaume Dubach Courant Institute, NYU

・ロン ・雪 と ・ ヨ と ・ ヨ と Eigenvectors of Non-Hermitian Random Matrices 26 / 32

-

Proofs

Short-range vs long-range

Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta = \theta(N) = N^{-1/2+\epsilon}$.

$$\chi_{\theta}(z) = \chi(z\theta^{-1})$$

$$\mathcal{O}_{11} \stackrel{\text{(d)}}{=} \prod_{n=2}^{N} \left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2} \right)$$
$$= e^{\left(\sum_{n=2}^{N} \log\left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2}\right)\chi_{\theta}(\lambda_n)\right)} \times e^{\left(\sum_{n=2}^{N} \log\left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2}\right)(1 - \chi_{\theta}(\lambda_n))\right)}$$

Guillaume Dubach Courant Institute, NYU

Proofs

Short-range vs long-range

Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta = \theta(N) = N^{-1/2+\epsilon}$.

$$\chi_{\theta}(z) = \chi(z\theta^{-1})$$

$$\begin{aligned} \mathscr{O}_{11} &\stackrel{\text{(d)}}{=} &\prod_{n=2}^{N} \left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2} \right) \\ &= & e^{\left(\sum_{n=2}^{N} \log\left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2}\right)\chi_{\theta}(\lambda_n)\right)} \\ &\quad \times e^{\left(\sum_{n=2}^{N} \log\left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2}\right)(1 - \chi_{\theta}(\lambda_n))\right)} \\ &= & \mathscr{O}_{1,1}^{\text{short}} \mathscr{O}_{1,1}^{\log} \end{aligned}$$

Guillaume Dubach Courant Institute, NYU

Proofs

Simulations

At any $\epsilon\text{-mesoscopic scale, i.e. }\theta=\textit{N}^{-1/2+\epsilon}\text{,}$

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 27 / 32

<ロ> (四) (四) (三) (三) (三)

At any ϵ -mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

• The short-range term doesn't depend on z_1 (invariance of local statistics).

Guillaume Dubach Courant Institute, NYU

・ロン ・雪 と ・ ヨ と ・ ヨ と Eigenvectors of Non-Hermitian Random Matrices 27 / 32

1

Proofs

At any ϵ -mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

• The short-range term doesn't depend on z_1 (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

$$\mathscr{O}_{1,1}^{\mathsf{short}} \sim \mathit{N}^{2\epsilon} \gamma_2^{-1}.$$

Guillaume Dubach Courant Institute, NYU Eigenve

Eigenvectors of Non-Hermitian Random Matrices 27/32

Proofs

At any ϵ -mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

• The short-range term doesn't depend on z_1 (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

$$\mathscr{O}_{1,1}^{\mathsf{short}} \sim \mathit{N}^{2\epsilon} \gamma_2^{-1}.$$

• The long-range term is deterministic (rigidity).

◆□▶ ◆□▶ ◆□▶ ◆□▶

At any ϵ -mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$

 The short-range term doesn't depend on z₁ (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

$$\mathscr{O}_{1,1}^{\mathrm{short}} \sim \mathit{N}^{2\epsilon} \gamma_2^{-1}.$$

• The long-range term is deterministic (rigidity). Compute an integral and

$$\mathscr{O}_{1,1}^{\mathsf{long}} \sim N^{1-2\epsilon} (1-|z_1|^2).$$

Guillaume Dubach Courant Institute, NYU

・ロット (雪) (日) (日) Eigenvectors of Non-Hermitian Random Matrices 27 / 32

At any ϵ -mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

• The short-range term doesn't depend on z_1 (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

$$\mathscr{O}_{1,1}^{\mathrm{short}} \sim \mathit{N}^{2\epsilon} \gamma_2^{-1}.$$

• The long-range term is deterministic (rigidity). Compute an integral and

$$\mathscr{O}_{1,1}^{\mathsf{long}} \sim N^{1-2\epsilon} (1-|z_1|^2).$$

$$\mathscr{O}_{1,1} = \mathscr{O}_{1,1}^{\mathsf{short}} \mathscr{O}_{1,1}^{\mathsf{long}}$$

Guillaume Dubach Courant Institute, NYU

Image: state of the state

At any ϵ -mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

• The short-range term doesn't depend on z_1 (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

$$\mathscr{O}_{1,1}^{\mathrm{short}} \sim \mathit{N}^{2\epsilon} \gamma_2^{-1}.$$

• The long-range term is deterministic (rigidity). Compute an integral and

$$\mathscr{O}_{1,1}^{\mathsf{long}} \sim N^{1-2\epsilon} (1-|z_1|^2).$$

$$\mathscr{O}_{1,1} = \mathscr{O}_{1,1}^{\mathrm{short}} \mathscr{O}_{1,1}^{\mathrm{long}} \sim N(1-|z_1|^2)\gamma_2^{-1}.$$

Guillaume Dubach Courant Institute, NYU

At any ϵ -mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

• The short-range term doesn't depend on z_1 (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

$$\mathscr{O}_{1,1}^{\mathrm{short}} \sim \mathit{N}^{2\epsilon} \gamma_2^{-1}.$$

• The long-range term is deterministic (rigidity). Compute an integral and

$$\mathscr{O}_{1,1}^{\mathsf{long}} \sim N^{1-2\epsilon} (1-|z_1|^2).$$

$$\mathcal{O}_{1,1} = \mathcal{O}_{1,1}^{\mathsf{short}} \mathcal{O}_{1,1}^{\mathsf{long}} \sim \textit{N}(1 - |z_1|^2) \gamma_2^{-1}.$$

This gives the limit distribution of **diagonal overlaps** in the bulk.

イロト 不得 とくほ とくほう

Off-diagonal overlaps

No limit distribution known, but explicit formulae for the first and second moments conditionally on $\lambda_1, \ldots, \lambda_N \in \mathbb{D}^N$.

Guillaume Dubach Courant Institute, NYU

イロト 不得 とくほ とくほう Eigenvectors of Non-Hermitian Random Matrices 28 / 32

-

Proofs

Off-diagonal overlaps

No limit distribution known, but explicit formulae for the first and second moments conditionally on $\lambda_1, \ldots, \lambda_N \in \mathbb{D}^N$. We can integrate them, separating short-range from long-range terms.

Figure: Domains of integration for the off-diagonal overlaps

- 4 同 2 4 日 2 4 日

Proofs

Simulations

Contents

1. Definitions and motivations

- 2. Results
- 3. Proofs
- 4. Simulations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Simulations

Universality of the γ_2^{-1} limit (conjecture)

Figure: Histograms for i.i.d. non Gaussian entries.

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 30 / 32

Simulations

Universality of the γ_2^{-1} limit (conjecture)

Figure: Histograms for i.i.d. non Gaussian entries.

Complex Uniform. Complex Bernoulli -

Guillaume Dubach Courant Institute, NYU

・ロト ・ 戸 ・ ・ ヨ ・ ・ Eigenvectors of Non-Hermitian Random Matrices 30 / 32

Ginibre Evolution : Color Movie

Consequence: average velocity of eigenvalues $\sim 1-|\lambda|^2,$ but the distribution has a heavy tail.

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 31 / 32

Ginibre Evolution : Color Movie

Consequence: average velocity of eigenvalues $\sim 1-|\lambda|^2,$ but the distribution has a heavy tail.

Colors are given according to the relative size of the associated diagonal overlaps : black, blue, magenta and red.

(Click to play video.)

Guillaume Dubach Courant Institute, NYU

Eigenvectors of Non-Hermitian Random Matrices 31 / 32

Proofs

Simulations

References

Seminal articles by Chalker & Mehlig :

- Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles.
- Eigenvector statistics in non-Hermitian random matrix ensembles.

Proofs

Simulations

References

Seminal articles by Chalker & Mehlig :

- Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles.
- Eigenvector statistics in non-Hermitian random matrix ensembles.

Recent related works : Fyodorov (2017), Crawford & Rosenthal (2018), Nowak & Tarnowski (2018), Grela & Warchoł (2018).

< ロ > < 同 > < 回 > < 回 > < □ > <

Proofs

Simulations

References

Seminal articles by Chalker & Mehlig :

- Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles.
- Eigenvector statistics in non-Hermitian random matrix ensembles.

Recent related works : Fyodorov (2017), Crawford & Rosenthal (2018), Nowak & Tarnowski (2018), Grela & Warchoł (2018).

This presentation is based on **The distribution of overlaps between eigenvectors of Ginibre matrices**.

(Bourgade & D., 2018)

イロト 不得 トイヨト イヨト 二日