Eigenvectors of Non-Hermitian Random Matrices

Guillaume Dubach
Courant Institute, NYU

October 8th, 2017
Random Matrices, Integrability and Complex Systems
Yad Hashmona, Judean Hills, Israel

Joint work with Paul Bourgade
Contents

1. Definitions and motivations
2. Results
3. Proofs
4. Simulations
Ginibre Ensemble

Ginibre ensemble: $N \times N$ matrix $G = G_N$, with i.i.d. entries

$$G_{i,j} \overset{d}{=} \mathcal{N} \left(0, \frac{1}{N} \text{Id} \right).$$
Ginibre Ensemble

Ginibre ensemble: $N \times N$ matrix $G = G_N$, with i.i.d. entries

$$G_{i,j} \overset{d}{=} \mathcal{N} \left(0, \frac{1}{N} \text{Id}\right).$$

Eigenvalues are almost surely distinct. We diagonalize

$$G = P \Delta P^{-1}, \quad \Delta = \text{Diag}(\lambda_1, \ldots, \lambda_N).$$
Ginibre Ensemble

Ginibre ensemble: $N \times N$ matrix $G = G_N$, with i.i.d. entries

$$G_{i,j} \overset{d}{=}= \mathcal{N} \left(0, \frac{1}{N} \text{Id} \right).$$

Eigenvalues are almost surely distinct. We diagonalize

$$G = P \Delta P^{-1}, \quad \Delta = \text{Diag}(\lambda_1, \ldots, \lambda_N).$$

Circular law: convergence of the empirical measure to the uniform measure on $\mathbb{D} = D(0, 1)$.

$$\sum_{k=1}^{N} \delta_{\lambda_k} \overset{d}{\to} \frac{1}{\pi} 1_{\mathbb{D}}.$$
Circular Law

Ginibre, N=5000
Overlaps of eigenvectors

L_k: left eigenvector for λ_k. \hspace{1cm} R_k: right eigenvector for λ_k.

Matrix of overlaps:

$$O_{ij} = \langle R_j | R_i \rangle \langle L_j | L_i \rangle$$ (Chalker & Mehlig '98, Walters & Starr '14).

• In a sense, simplest homogeneous non-trivial quantity.
• Quantify the stability of the spectrum.

If $\lambda_i(t)$ is an eigenvalue of $G(t) + tE$,

$$O_{ii} = \lim_{t \to 0} \sup \|E\| = 1 \| \lambda_i(t) - \lambda_i \|.$$

• Appear naturally in Ginibre Evolution.
Overlaps of eigenvectors

L_k: left eigenvector for λ_k.
R_k: right eigenvector for λ_k.

Chosen such that $\langle L_i \mid R_j \rangle = \delta_{i,j}$.
Overlaps of eigenvectors

L_k: left eigenvector for λ_k. R_k: right eigenvector for λ_k.

Chosen such that $\langle L_i | R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$\Theta_{ij} = \langle R_j | R_i \rangle \langle L_j | L_i \rangle$$

(Chalker & Mehlig '98, Walters & Starr '14).
Overlaps of eigenvectors

\(L_k \): left eigenvector for \(\lambda_k \). \(R_k \): right eigenvector for \(\lambda_k \).

Chosen such that \(\langle L_i | R_j \rangle = \delta_{i,j} \).

Matrix of overlaps:

\[
\mathcal{O}_{ij} = \langle R_j | R_i \rangle \langle L_j | L_i \rangle
\]

(Chalker & Mehlig ’98, Walters & Starr ’14).

• In a sense, simplest **homogeneous** non trivial quantity.
Overlaps of eigenvectors

L_k: left eigenvector for λ_k.
R_k: right eigenvector for λ_k.

Chosen such that $\langle L_i \mid R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$\mathcal{O}_{ij} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$

(Chalker & Mehlig '98, Walters & Starr '14).

- In a sense, simplest **homogeneous** non trivial quantity.
- Quantify the **stability** of the spectrum.

If $\lambda_i(t)$ is an eigenvalue of $G + tE$,

$$\mathcal{O}_{ii} = \lim_{t \to 0} \sup_{\|E\|=1} t^{-1}|\lambda_i(t) - \lambda_i|.$$
Overlaps of eigenvectors

L_k: left eigenvector for λ_k. R_k: right eigenvector for λ_k.

Chosen such that $\langle L_i \mid R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$\mathcal{O}_{ij} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$

(Chalker & Mehlig '98, Walters & Starr '14).

- In a sense, simplest **homogeneous** non trivial quantity.
- Quantify the **stability** of the spectrum.
 If $\lambda_i(t)$ is an eigenvalue of $G + tE$,

$$\mathcal{O}_{ii} = \lim_{t \to 0} \sup_{\|E\| = 1} t^{-1} |\lambda_i(t) - \lambda_i|.$$

- Appear naturally in **Ginibre Evolution**.
Ginibre Evolution

Non-hermitian analog of Dyson Brownian Motion,

\[\mathrm{d}G_{ij}(t) = \frac{\mathrm{d}B_{ij}(t)}{\sqrt{N}} - \frac{1}{2} G_{ij}(t) \mathrm{d}t. \]
Ginibre Evolution

Non-hermitian analog of Dyson Brownian Motion,

$$dG_{ij}(t) = \frac{dB_{ij}(t)}{\sqrt{N}} - \frac{1}{2} G_{ij}(t)dt.$$

Eigenvalues are \textbf{correlated martingales without extra drift}.

$$d\lambda_k(t) = dM_k(t) - \frac{1}{2} \lambda_k(t)dt,$$
Ginibre Evolution

Non-hermitian analog of Dyson Brownian Motion,

$$dG_{ij}(t) = \frac{dB_{ij}(t)}{\sqrt{N}} - \frac{1}{2} G_{ij}(t) dt.$$

Eigenvalues are correlated martingales without extra drift.

$$d\lambda_k(t) = dM_k(t) - \frac{1}{2} \lambda_k(t) dt,$$

with the bracket

$$d\langle M_i, M_j \rangle_t = \mathcal{O}_{i,j}(t) \frac{dt}{N}.$$
Ginibre Evolution (Movie)

Main features: repulsion, slow 'speed' at the edge, surprising apparent correlation of some pairs or triplets of eigenvalues.

(Click to play video.)
First properties of overlaps

L_k: left eigenvector for λ_k. \hspace{1cm} R_k: right eigenvector for λ_k.

Chosen such that $\langle L_i \mid R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$\mathcal{O}_{i,j} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$
First properties of overlaps

L_k: left eigenvector for λ_k. R_k: right eigenvector for λ_k.

Chosen such that $\langle L_i \mid R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$O_{i,j} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$

Remark

For any i, $O_{i,i} = \|R_i\|^2 \|L_i\|^2 \geq 1$ and $\sum_j O_{i,j} = 1$.
First properties of overlaps

L_k: left eigenvector for λ_k. \hspace{1cm} R_k: right eigenvector for λ_k.

Chosen such that $\langle L_i \mid R_j \rangle = \delta_{i,j}$.

Matrix of overlaps:

$$\mathcal{O}_{i,j} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$$

Remark

For any i, $\mathcal{O}_{i,i} = \|R_i\|^2 \|L_i\|^2 \geq 1$ and $\sum_j \mathcal{O}_{i,j} = 1$.

Proposition

The matrix \mathcal{O} is hermitian positive-definite with

$$\min \text{Spec} \mathcal{O} = 1.$$
Contents

1. Definitions and motivations
2. Results
3. Proofs
4. Simulations
Chalker & Mehlig computed the first moment of diagonal overlaps.
Diagonal Overlaps

Chalker & Mehlig computed the first moment of diagonal overlaps.

Proposition (Chalker and Mehlig)

Conditionally on $(\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N)$,

$$
\mathbb{E}(\mathcal{O}_{11} \mid \lambda = \mathbf{z}) = \prod_{n=2}^{N} \left(1 + \frac{1}{N |z_1 - z_n|^2} \right),
$$
Chalker & Mehlig computed the first moment of diagonal overlaps.

Proposition (Chalker and Mehlig)

Conditionally on \((\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N)\),

\[
\mathbb{E}(\mathcal{O}_{11}|\lambda = z) = \prod_{n=2}^{N} \left(1 + \frac{1}{N|z_1 - z_n|^2}\right),
\]

There is actually an explicit and simple decomposition of the quenched distribution of \(\mathcal{O}_{1,1}\).
Theorem (Bourgade, D.)

Conditionally on $(\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N)$,

\[
O_{11}(d) = N \prod_{k=2}^{N} \left(1 + \|X_k\|^2 \right)
\]

where \(X_k\)'s are independent standard complex Gaussian.

This enables to determine a limit distribution.
Theorem (Bourgade, D.)

Conditionally on \((\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N)\),

\[
\mathcal{O}_{11} \overset{(d)}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),
\]

where \(X_k\)'s are independent standard complex Gaussian.
Diagonal Overlaps

Theorem (Bourgade, D.)

Conditionally on \((\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N)\),

\[
O_{11} \overset{(d)}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),
\]

where \(X_k\)'s are independent standard complex Gaussian.

This enables to determine a limit distribution.
Diagonal Overlaps

Theorem (Bourgade, D.)

Conditionally on \((\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N)\),

\[
\mathcal{O}_{11} \overset{(d)}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),
\]

where \(X_k\)'s *are independent standard complex Gaussian.*

This enables to determine a limit distribution.

Theorem (Bourgade, D.)

Conditionally on \(\lambda_1 = z_1 \in \mathbb{D}\),

\[
N^{-1} \mathcal{O}_{1,1} \xrightarrow{(d)} (1 - |z_1|^2) \gamma_2^{-1}
\]
The γ_2^{-1} distribution

Figure: Density of $\frac{1}{\gamma_2}$, where γ_2 has density $\frac{1}{\Gamma(2)} te^{-t} 1_{\mathbb{R}^+_1}$.
The γ_2^{-1} distribution

Figure: Density of $\frac{1}{\gamma_2}$, where γ_2 has density $\frac{1}{\Gamma(2)} t e^{-t} 1_{\mathbb{R}^+}$.

Heavy-tail distribution (no second moment).
Off-diagonal overlaps

\[z_1, z_2 \in \mathbb{D}, \quad \omega = |z_1 - z_2|N^{1/2}. \]
Off-diagonal overlaps

\[z_1, z_2 \in \mathbb{D}, \quad \omega = |z_1 - z_2| N^{1/2}. \]

Mesoscopic scales : \(\omega \sim N^\epsilon, \epsilon \in (0, \frac{1}{2}). \)
Off-diagonal overlaps

\[z_1, z_2 \in \mathbb{D}, \quad \omega = |z_1 - z_2| N^{1/2}. \]
Mesoscopic scales: \(\omega \sim N^\epsilon, \epsilon \in (0, \frac{1}{2}). \)

Theorem (Bourgade, D.)

Conditionally on \((\lambda_1, \lambda_2) = (z_1, z_2) \in \mathbb{D}^2 \) at mesoscopic distance,

\[
E(O_{12}) \sim -1 - z_1 z_2 N^{1/4}
\]
\[
E(|O_{12}|^2) \sim (1 - |z_1|^2)^{1/2} |z_1 - z_2|^{1/4}
\]
\[
E(O_{11} O_{22}) \sim E(O_{11}) E(O_{22}).
\]

(First term was known by Chalker & Mehlig)
Off-diagonal overlaps

\(z_1, z_2 \in \mathbb{D}, \quad \omega = |z_1 - z_2| N^{1/2}. \)

Mesoscopic scales: \(\omega \sim N^\epsilon, \epsilon \in (0, \frac{1}{2}). \)

Theorem (Bourgade, D.)

Conditionally on \((\lambda_1, \lambda_2) = (z_1, z_2) \in \mathbb{D}^2 \) at mesoscopic distance,

\[
\mathbb{E}(\mathcal{O}_{12}) \sim -\frac{1 - z_1 \overline{z_2}}{N |z_1 - z_2|^4}
\]

\[
\mathbb{E}(|\mathcal{O}_{12}|^2) \sim \frac{(1 - |z_1|^2)^2}{|z_1 - z_2|^4}
\]

\[
\mathbb{E}(\mathcal{O}_{11} \mathcal{O}_{22}) \sim \mathbb{E}(\mathcal{O}_{11}) \mathbb{E}(\mathcal{O}_{22}).
\]

(First term was known by Chalker & Mehlig)
Microscopic Scale

More importantly, one can go down to $\omega \sim 1$.
More importantly, one can go down to $\omega \sim 1$.

Theorem (Bourgade, D.)

Conditionally on $(\lambda_1, \lambda_2) = (z_1, z_2) \in \mathbb{D}^2$ *at microscopic distance,*
More importantly, one can go down to $\omega \sim 1$.

Theorem (Bourgade, D.)

Conditionally on $(\lambda_1, \lambda_2) = (z_1, z_2) \in \mathbb{D}^2$ at microscopic distance,

\[
\mathbb{E}(\theta_{12}) \sim -N \frac{1 - z_1 \overline{z_2}}{|\omega|^4} \times \frac{1 - (1 + |\omega|^2)e^{-|\omega|^2}}{1 - e^{-|\omega|^2}}
\]

\[
\mathbb{E}(\theta_{12}^2) \sim \frac{N^2(1 - |z_1|^2)^2}{|\omega|^4}
\]

\[
\mathbb{E}(\theta_{11} \theta_{22}) \sim \frac{N^2(1 - |z_1|^2)^2}{|\omega|^4} \times \frac{1 + |\omega|^4 - e^{-|\omega|^2}}{1 - e^{-|\omega|^2}}.
\]
More importantly, one can go down to $\omega \sim 1$.

Theorem (Bourgade, D.)

Conditionally on $(\lambda_1, \lambda_2) = (z_1, z_2) \in \mathbb{D}^2$ at microscopic distance,

$$\mathbb{E}(\mathcal{O}_{12}) \sim -N \frac{1 - z_1 \overline{z_2}}{|\omega|^4} \times \frac{1 - (1 + |\omega|^2) e^{-|\omega|^2}}{1 - e^{-|\omega|^2}}$$

$$\mathbb{E}(|\mathcal{O}_{12}|^2) \sim \frac{N^2(1 - |z_1|^2)^2}{|\omega|^4}$$

$$\mathbb{E}(\mathcal{O}_{11} \mathcal{O}_{22}) \sim \frac{N^2(1 - |z_1|^2)^2}{|\omega|^4} \times \frac{1 + |\omega|^4 - e^{-|\omega|^2}}{1 - e^{-|\omega|^2}}.$$

(First term conjectured by Chalker & Mehlig)
Contents

1. Definitions and motivations
2. Results
3. Proofs
4. Simulations
Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)

Conditionally on \((\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N) \in \mathbb{D}^N\),

\[
\mathcal{O}_{11} \overset{(d)}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),
\]

where \(X_k\)'s are independent standard complex Gaussian.
Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)

Conditionally on \((\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N) \in \mathbb{D}^N\),

\[
\mathcal{O}_{11} \overset{(d)}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),
\]

where \(X_k\)'s are independent standard complex Gaussian.

To prove it, begin with Schur Decomposition:

\[
G = U T U^*
\]
Sketch of proof

Theorem (Quenched distribution of the diagonal overlaps)

Conditionally on \((\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N) \in \mathbb{D}^N\),

\[
\mathcal{O}_{11} \overset{(d)}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2}\right),
\]

where \(X_k\)'s are independent standard complex Gaussian.

To prove it, begin with Schur Decomposition:

\[G = UTU^* \]

Remark

\(T\) is independent on \(U\).
Theorem (Quenched distribution of the diagonal overlaps)

Conditionally on $(\lambda_1, \ldots, \lambda_N) = (z_1, \ldots, z_N) \in \mathbb{D}^N$,

$$\mathcal{O}_{11} \overset{(d)}{=} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|z_1 - z_k|^2} \right),$$

where X_k's are independent standard complex Gaussian.

To prove it, begin with Schur Decomposition:

$$G = UTU^*$$

Remark

T is independent on U. The overlaps of the matrix T are the same as those of G!
Schur Decomposition:

\[G = U T U^* \]
Schur Decomposition:

\[G = UTU^* \]

with

\[
T = \begin{pmatrix}
\lambda_1 & T_{12} & \cdots & T_{1N} \\
0 & \lambda_2 & \cdots & T_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_N
\end{pmatrix}.
\]
Schur Decomposition:

\[G = UTU^* \]

with

\[
T = \begin{pmatrix}
\lambda_1 & T_{12} & \cdots & T_{1N} \\
0 & \lambda_2 & \cdots & T_{2N} \\
& \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_N
\end{pmatrix}.
\]

Proposition (Mehta)
Schur Decomposition:

\[G = U T U^* \]

with

\[T = \begin{pmatrix}
\lambda_1 & T_{12} & \cdots & T_{1N} \\
0 & \lambda_2 & \cdots & T_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_N
\end{pmatrix}. \]

Proposition (Mehta)

The diagonal of \(T \) is independent of the upper-diagonal.
Schur Decomposition:

\[G = U T U^* \]

with

\[
T = \begin{pmatrix}
\lambda_1 & T_{12} & \ldots & T_{1N} \\
0 & \lambda_2 & \ldots & T_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_N
\end{pmatrix}.
\]

Proposition (Mehta)

The diagonal of \(T \) is independent of the upper-diagonal.

The upper-diagonal entries of \(T \) are i.i.d. \(\mathcal{N} \left(0, \frac{1}{N} \right) \).
\[T = \begin{pmatrix}
\lambda_1 & T_{12} & \cdots & T_{1N} \\
0 & \lambda_2 & \cdots & T_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_N
\end{pmatrix} \]
T = \begin{pmatrix}
\lambda_1 & T_{12} & \ldots & T_{1N} \\
0 & \lambda_2 & \ldots & T_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_N
\end{pmatrix}

Right-eigenvectors of T: \(R_1 = (1, 0, \ldots, 0) \quad R_2 = (a, 1, 0, \ldots, 0) \).
$T = \begin{pmatrix}
\lambda_1 & T_{12} & \ldots & T_{1N} \\
0 & \lambda_2 & \ldots & T_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_N
\end{pmatrix}$

Right-eigenvectors of T: $R_1 = (1, 0, \ldots, 0)$, $R_2 = (a, 1, 0, \ldots, 0)$.

Left-eigenvectors of T: $L_1 = (b_1, \ldots, b_N)$, $L_2 = (d_1, \ldots, d_N)$.
\[
T = \begin{pmatrix}
\lambda_1 & T_{12} & \ldots & T_{1N} \\
0 & \lambda_2 & \ldots & T_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_N
\end{pmatrix}
\]

Right-eigenvectors of \(T \):
\(R_1 = (1, 0, \ldots, 0) \) \quad \(R_2 = (a, 1, 0, \ldots, 0) \).

Left-eigenvectors of \(T \):
\(L_1 = (b_1, \ldots, b_N) \) \quad \(L_2 = (d_1, \ldots, d_N) \).

with \(a = -b_2 \), \(b_1 = 1 \), \(b_i = \frac{1}{\lambda_1 - \lambda_i} \sum_{k=1}^{i-1} b_k T_{ki} \) for \(i \geq 2 \)

and \(d_1 = 0 \), \(d_2 = 1 \), \(d_i = \frac{1}{\lambda_2 - \lambda_i} \sum_{k=1}^{i-1} d_k T_{ki} \) for \(i \geq 3 \).
So, as $O_{i,j} = \langle R_j | R_i \rangle \langle L_j | L_i \rangle$,
So, as \(\mathcal{O}_{i,j} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle \),

\[
\mathcal{O}_{11} = \sum_{i=1}^{N} |b_i|^2, \quad \mathcal{O}_{12} = -\overline{b_2} \sum_{i=2}^{N} b_i d_i, \quad \mathcal{O}_{22} = (1 + |b_2|^2) \sum_{i=2}^{N} |d_i|^2.
\]
So, as $\mathcal{O}_{i,j} = \langle R_j | R_i \rangle \langle L_j | L_i \rangle$,

$$
\mathcal{O}_{11} = \sum_{i=1}^{N} |b_i|^2, \quad \mathcal{O}_{12} = -\overline{b_2} \sum_{i=2}^{N} b_i d_i, \quad \mathcal{O}_{22} = (1+|b_2|^2) \sum_{i=2}^{N} |d_i|^2.
$$

Define for $d \leq N$,

$$b^{(d)} = (b_1, \ldots, b_d)$$
So, as $\mathcal{O}_{i,j} = \langle R_j | R_i \rangle \langle L_j | L_i \rangle$,

$$\mathcal{O}_{11} = \sum_{i=1}^{N} |b_i|^2, \quad \mathcal{O}_{12} = -\overline{b_2} \sum_{i=2}^{N} b_i d_i, \quad \mathcal{O}_{22} = (1 + |b_2|^2) \sum_{i=2}^{N} |d_i|^2.$$

Define for $d \leq N$,

$$b^{(d)} = (b_1, \ldots, b_d)$$

$$\mathcal{O}^{(d)}_{11} = \sum_{i=1}^{d} |b_i|^2 = \|b^{(d)}\|^2$$
So, as $O_{i,j} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$,

$$
O_{11} = \sum_{i=1}^{N} |b_i|^2, \quad O_{12} = -\overline{b_2} \sum_{i=2}^{N} b_i d_i, \quad O_{22} = (1 + |b_2|^2) \sum_{i=2}^{N} |d_i|^2.
$$

Define for $d \leq N$,

$$
b^{(d)} = (b_1, \ldots, b_d)
$$

$$
O_{11}^{(d)} = \sum_{i=1}^{d} |b_i|^2 = \| b^{(d)} \|^2
$$

$$
T_{d+1} = (T_{1,d+1}, T_{2,d+1}, \ldots, T_{d,d+1})
$$
So, as $\mathcal{O}_{i,j} = \langle R_j \mid R_i \rangle \langle L_j \mid L_i \rangle$,

$$
\mathcal{O}_{11} = \sum_{i=1}^{N} |b_i|^2, \quad \mathcal{O}_{12} = -\overline{b_2} \sum_{i=2}^{N} b_i d_i, \quad \mathcal{O}_{22} = (1 + |b_2|^2) \sum_{i=2}^{N} |d_i|^2.
$$

Define for $d \leq N$,

$$
b^{(d)} = (b_1, \ldots, b_d)
$$

$$
\mathcal{O}^{(d)}_{11} = \sum_{i=1}^{d} |b_i|^2 = \| b^{(d)} \|^2
$$

$$
T_{d+1} = (T_{1,d+1}, T_{2,d+1}, \ldots, T_{d,d+1})
$$

In this way,

$$
b_{d+1} = \frac{1}{\lambda_1 - \lambda_{d+1}} b^{(d)} \cdot T_{d+1}.
$$
Recurrence

Initial and final terms: $\mathcal{O}_{1,1}^{(1)} = |b_1|^2 = 1$, $\mathcal{O}_{1,1}^{(N)} = \mathcal{O}_{1,1}$.

Note that $X_{d+1} = \sqrt{N}b_{(d)}$.

$\|b_{(d)}\|_2 = N(0,1)$ is independent from $\mathcal{O}_{1,1}^{(d)}$. This yields the decomposition. \[\square\]
Recurrence

Initial and final terms: $O_{1,1}^{(1)} = |b_1|^2 = 1$, $O_{1,1}^{(N)} = O_{1,1}^{(1)}$.

\[
O_{1,1}^{(d+1)} = O_{1,1}^{(d)} + |b_{d+1}|^2 = O_{1,1}^{(d)} + \frac{1}{|\lambda_1 - \lambda_{d+1}|^2} |b^{(d)} . T_{d+1}| \\
= O_{1,1}^{(d)} \left(1 + \frac{1}{|\lambda_1 - \lambda_{d+1}|^2} \frac{|b^{(d)} . T_{d+1}|^2}{\|b^{(d)}\|^2} \right)
\]
Recurrence

Initial and final terms: \(\mathcal{O}_{1,1}^{(1)} = |b_1|^2 = 1, \quad \mathcal{O}_{1,1}^{(N)} = \mathcal{O}_{1,1} \).

\[
\mathcal{O}_{1,1}^{(d+1)} = \mathcal{O}_{1,1}^{(d)} + |b_{d+1}|^2 = \mathcal{O}_{1,1}^{(d)} + \frac{1}{|\lambda_1 - \lambda_{d+1}|^2} |b^{(d)} \cdot T_{d+1}| \\
= \mathcal{O}_{1,1}^{(d)} \left(1 + \frac{1}{|\lambda_1 - \lambda_{d+1}|^2} \frac{|b^{(d)} \cdot T_{d+1}|^2}{\|b^{(d)}\|^2} \right)
\]

Note that

\[
X_{d+1} = \frac{\sqrt{N} b^{(d)} \cdot T_{d+1}}{\|b^{(d)}\|} \overset{d}{\sim} \mathcal{N}(0, 1)
\]

is independent from \(\mathcal{O}_{1,1}^{(d)} \). This yields the decomposition.
Theorem (Limit distribution)

Conditioned on $\lambda_1 = z_1 \in \mathbb{D}$,

$$N^{-1} \theta_{1,1} \to (1 - |z_1|^2) \gamma_2^{-1}$$
<table>
<thead>
<tr>
<th>Theorem (Limit distribution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditioned on $\lambda_1 = z_1 \in \mathbb{D}$,</td>
</tr>
<tr>
<td>$N^{-1} \theta_{1,1} \rightarrow (1 -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Kostlan I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>${N</td>
</tr>
</tbody>
</table>
Theorem (Limit distribution)

Conditioned on \(\lambda_1 = z_1 \in \mathbb{D}, \)**

\[
N^{-1} \mathcal{O}_{1,1} \rightarrow (1 - |z_1|^2) \gamma_2^{-1}
\]

Theorem (Kostlan I)

\[\{N|\lambda_1|^2, \ldots, N|\lambda_N|^2\}\] are distributed as independent \(\{\gamma_1, \ldots, \gamma_N\} \) variables.

Theorem (Kostlan II)

Conditioned on \(\lambda_1 = 0, \) \(\{N|\lambda_2|^2, \ldots, N|\lambda_N|^2\}\) are distributed as independent \(\{\gamma_2, \ldots, \gamma_N\} \) variables.
For $a, b > 0$ we recall the following facts. (\perp means independence.)

Fact (1)
If $\gamma_a \perp \gamma_b$, then $\gamma_a \gamma_a + \gamma_b = \beta_{a,b}$.

Fact (2)
If $\beta_{a,b} \perp \beta_{a,b} + b, c$, then $\beta_{a,b} \beta_{a,b} + b, c = \beta_{a,b} + b, c$.

Fact (3)
$N \beta_{a,b} \rightarrow N \gamma_a$ as $N \rightarrow \infty$.
For $a, b > 0$ we recall the following facts. (\perp means independence.)

Fact (1)

If $\gamma_a \perp \gamma_b$, then $\frac{\gamma_a}{\gamma_a + \gamma_b} \overset{d}{=} \beta_{a,b}$.

<table>
<thead>
<tr>
<th>β-(\gamma) algebra</th>
<th>Definitions and motivations</th>
<th>Results</th>
<th>Proofs</th>
<th>Simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>For $a, b > 0$ we recall the following facts. (\perp means independence.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fact (1)

If $\gamma_a \perp \gamma_b$, then $\frac{\gamma_a}{\gamma_a + \gamma_b} \overset{d}{=} \beta_{a,b}$.

<table>
<thead>
<tr>
<th>β-(\gamma) algebra</th>
<th>Definitions and motivations</th>
<th>Results</th>
<th>Proofs</th>
<th>Simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>For $a, b > 0$ we recall the following facts. (\perp means independence.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For \(a, b > 0 \) we recall the following facts. (\(\perp \) means independence.)

Fact (1)

If \(\gamma_a \perp \gamma_b \), then \(\frac{\gamma_a}{\gamma_a + \gamma_b} \overset{d}{=} \beta_{a,b} \).

Fact (2)

If \(\beta_{a,b} \perp \beta_{a+b,c} \), then \(\beta_{a,b} \beta_{a+b,c} \overset{d}{=} \beta_{a,b+c} \).
β-γ algebra

For $a, b > 0$ we recall the following facts. (\perp means independence.)

Fact (1)

If $\gamma_a \perp \gamma_b$, then $\frac{\gamma_a}{\gamma_a + \gamma_b} \overset{d}{=} \beta_{a,b}$.

Fact (2)

If $\beta_{a,b} \perp \beta_{a+b,c}$, then $\beta_{a,b} \beta_{a+b,c} \overset{d}{=} \beta_{a,b+c}$.

Fact (3)

$\mathcal{N} \beta_{a,N} \overset{d}{\to} \gamma_a$.
Conditioned on $\lambda_1 = 0$, we can use the $\beta-\gamma$ algebra.

$$\frac{1}{N} \mathcal{O}_{11} \overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_1 - \lambda_k|^2} \right)$$
Conditioned on $\lambda_1 = 0$, we can use the β-γ algebra.

\[
\frac{1}{N} \Theta_{11} \overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_1 - \lambda_k|^2} \right)
\]

\[
= \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_k|^2} \right)
\]
Conditioned on $\lambda_1 = 0$, we can use the β-γ algebra.

$$\frac{1}{N} \sigma_{11} \overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_1 - \lambda_k|^2} \right)$$

$$= \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_k|^2} \right)$$

$$(d) \quad \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{\gamma_1}{\gamma_k} \right)$$
Conditioned on $\lambda_1 = 0$, we can use the β-γ algebra.

\[
\frac{1}{N} \theta^{11} \overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_1 - \lambda_k|^2} \right)
\]

\[
= \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_k|^2} \right)
\]

\[
\overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{\gamma_1}{\gamma_k} \right)
\]

\[
\overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \beta_{k,1}^{-1}
\]
Conditioned on $\lambda_1 = 0$, we can use the β-γ algebra.

\[
\frac{1}{N} \theta_{11} \overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_1 - \lambda_k|^2} \right) \\
= \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_k|^2} \right) \\
\overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{\gamma_1}{\gamma_k} \right) \\
\overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \beta_{k,1}^{-1} \\
\overset{(d)}{=} \frac{1}{N} \beta_{2,N-1}^{-1}
\]
Conditioned on $\lambda_1 = 0$, we can use the β-γ algebra.

\[
\frac{1}{N} \mathcal{O}_{11} \overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_1 - \lambda_k|^2} \right)
\]

\[
= \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{|X_k|^2}{N|\lambda_k|^2} \right)
\]

\[
\overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \left(1 + \frac{\gamma_1}{\gamma_k} \right)
\]

\[
\overset{(d)}{=} \frac{1}{N} \prod_{k=2}^{N} \beta_{k,1}^{-1}
\]

\[
\overset{(d)}{=} \frac{1}{N} \beta_{2,N-1}^{-1} \overset{d}{\longrightarrow} \frac{d}{N \to \infty} \gamma_2^{-1}.
\]
\[\frac{O_{11}}{N} \xrightarrow{d_{\rightarrow \infty}} \gamma_{2}^{-1} \]

This is the limiting heavy-tail distribution that Chalker and Mehlig predicted.
This is the limiting heavy-tail distribution that Chalker and Mehlig predicted.

\[
\frac{O_{11}}{N} \xrightarrow{d \, N \to \infty} \gamma_2^{-1}
\]

Figure: Fact-checking over 100 Ginibre 600×600 matrices.
How do we condition on $\lambda_1 = z_1$ anywhere in the bulk?
How do we condition on $\lambda_1 = z_1$ anywhere in the bulk?

Short-range vs long-range.

Figure: Domains of integration within the bulk
Short-range vs long-range

Assume χ is smooth enough and has compact support.
Short-range vs long-range

Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta = \theta(N) = N^{-1/2+\epsilon}$.

$$\chi_\theta(z) = \chi(z^{\theta^{-1}})$$
Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta = \theta(N) = N^{-1/2+\epsilon}$.

$$\chi_\theta(z) = \chi(z\theta^{-1})$$

$$\mathcal{O}_{11} \overset{(d)}{=} \prod_{n=2}^{N} \left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2}\right)$$
Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta = \theta(N) = N^{-1/2+\epsilon}$.

$$\chi_\theta(z) = \chi(z\theta^{-1})$$

$$\mathcal{O}_{11} \overset{(d)}{=} \prod_{n=2}^{N} \left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2} \right)$$

$$= e^{\left(\sum_{n=2}^{N} \log \left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2} \right) \chi_\theta(\lambda_n) \right)} \times e^{\left(\sum_{n=2}^{N} \log \left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2} \right) (1 - \chi_\theta(\lambda_n)) \right)}$$
Assume χ is smooth enough and has compact support. Mesoscopic zoom $\theta = \theta(N) = N^{-1/2+\epsilon}$.

$$\chi_\theta(z) = \chi(z\theta^{-1})$$

$$\Theta_{11} \overset{(d)}{=} \prod_{n=2}^{N} \left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2} \right)$$

$$= e^{\left(\sum_{n=2}^{N} \log \left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2} \right) \chi_\theta(\lambda_n) \right)}$$

$$\times e^{\left(\sum_{n=2}^{N} \log \left(1 + \frac{|X_n|^2}{N|\lambda_1 - \lambda_n|^2} \right) (1 - \chi_\theta(\lambda_n)) \right)}$$

$$= \Theta_{1,1}^{\text{short}} \Theta_{1,1}^{\text{long}}$$
At any ϵ-mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,
At any ε-mesoscopic scale, i.e. $\theta = N^{-1/2+\varepsilon}$,

- The short-range term doesn’t depend on z_1 (invariance of local statistics).
At any ϵ-mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

- The short-range term doesn’t depend on z_1 (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

$$\mathcal{O}_{1,1}^{\text{short}} \sim N^{2\epsilon} \gamma_2^{-1}.$$
At any ϵ-mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

- The short-range term doesn’t depend on z_1 (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

 $O_{1,1}^{\text{short}} \sim N^{2\epsilon} \gamma^{-1}$.

- The long-range term is deterministic (rigidity).
At any ϵ-mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

- The short-range term doesn’t depend on z_1 (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

$$O_{1,1}^{\text{short}} \sim N^{2\epsilon} \gamma_2^{-1}.$$

- The long-range term is deterministic (rigidity). Compute an integral and

$$O_{1,1}^{\text{long}} \sim N^{1-2\epsilon}(1 - |z_1|^2).$$
At any ϵ-mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

- The short-range term doesn’t depend on z_1 (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

$$O_{1,1}^{\text{short}} \sim N^{2\epsilon} \gamma_2^{-1}.$$

- The long-range term is deterministic (rigidity). Compute an integral and

$$O_{1,1}^{\text{long}} \sim N^{1-2\epsilon} (1 - |z_1|^2).$$

$$O_{1,1} = O_{1,1}^{\text{short}} O_{1,1}^{\text{long}}$$
At any ϵ-mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

- The short-range term doesn’t depend on z_1 (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

$$O_{1,1}^{\text{short}} \sim N^{2\epsilon} \gamma_2^{-1}.$$

- The long-range term is deterministic (rigidity). Compute an integral and

$$O_{1,1}^{\text{long}} \sim N^{1-2\epsilon}(1 - |z_1|^2).$$

$$O_{1,1} = O_{1,1}^{\text{short}} O_{1,1}^{\text{long}} \sim N(1 - |z_1|^2) \gamma_2^{-1}.$$
At any ϵ-mesoscopic scale, i.e. $\theta = N^{-1/2+\epsilon}$,

- The short-range term doesn’t depend on z_1 (invariance of local statistics). We compare it to the $z_1 = 0$ case and find

$$O_{1,1}^{\text{short}} \sim N^{2\epsilon \gamma_2^{-1}}.$$

- The long-range term is deterministic (rigidity). Compute an integral and

$$O_{1,1}^{\text{long}} \sim N^{1-2\epsilon}(1 - |z_1|^2).$$

$$O_{1,1} = O_{1,1}^{\text{short}} O_{1,1}^{\text{long}} \sim N(1 - |z_1|^2)\gamma_2^{-1}.$$

This gives the limit distribution of diagonal overlaps in the bulk.
Off-diagonal overlaps

No limit distribution known, but explicit formulae for the first and second moments conditionally on $\lambda_1, \ldots, \lambda_N \in \mathbb{D}^N$.
Off-diagonal overlaps

No limit distribution known, but explicit formulae for the first and second moments conditionally on $\lambda_1, \ldots, \lambda_N \in \mathbb{D}^N$. We can integrate them, separating short-range from long-range terms.

Figure: Domains of integration for the off-diagonal overlaps
Contents

1. Definitions and motivations
2. Results
3. Proofs
4. Simulations
Universality of the γ_2^{-1} limit (conjecture)

Figure: Histograms for i.i.d. non Gaussian entries.
Universality of the γ_2^{-1} limit (conjecture)

Figure: Histograms for i.i.d. non Gaussian entries.

Complex Bernoulli – Complex Uniform.
Ginibre Evolution : Color Movie

Consequence: average velocity of eigenvalues $\sim 1 - |\lambda|^2$, but the distribution has a heavy tail.
Ginibre Evolution: Color Movie

Consequence: average velocity of eigenvalues $\sim 1 - |\lambda|^2$, but the distribution has a heavy tail.

Colors are given according to the relative size of the associated diagonal overlaps: black, blue, magenta and red.

(Click to play video.)
Seminal articles by Chalker & Mehlig:

- **Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles.**
- **Eigenvector statistics in non-Hermitian random matrix ensembles.**

Recent related works:
- Fyodorov (2017),
- Crawford & Rosenthal (2018),
- Nowak & Tarnowski (2018),

This presentation is based on
- The distribution of overlaps between eigenvectors of Ginibre matrices.
 (Bourgade & D., 2018)
References

Seminal articles by Chalker & Mehlig:

- **Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles.**
- **Eigenvector statistics in non-Hermitian random matrix ensembles.**

References

Seminal articles by Chalker & Mehlig :

- **Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles.**
- **Eigenvector statistics in non-Hermitian random matrix ensembles.**

This presentation is based on **The distribution of overlaps between eigenvectors of Ginibre matrices.**

(Bourgade & D., 2018)