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Motivation

Thermalization (dynamics) of many-body quantum
systems

Connection between Eigenstate Themalization and
dynamics

Role of Random Matrix Theory and relevant (time)scales



Thermalization of Quantum Systems

Eigenstate Thermalization Hypothesis

Individual energy eigenstate is “thermal”

〈Ei|A|Ei〉 ' Tr(ρmicA) ' Tr(e−βHA)/Tr(e−βH)

“Eigenstate Ensemble” explains eventual thermalization

lim
t→∞
〈Ψ(t)|A|Ψ(t)〉 =

∑
i

|Ci|2〈Ei|A|Ei〉+

lim
t→∞

∑
i 6=j

C∗i Cj〈Ei|A|Ej〉e−i(Ei−Ej)t ' Ath +O(1/L)



Eigenstate Thermalization Hypothesis

ETH ansatz

〈Ei|A|Ej〉 = Aeth(E)δij + Ω−1/2f(E,ω)rij

· E = (Ei + Ej)/2, ω = Ei − Ej
· Aeth, f depend on energy density E/V

Deutsch’91 Srednicki’94; 99 Rigol, Dunjko, Olshanii’08

Meaning of form-factor f(ω):

〈A(t)A(0)〉β =
∫
dω f 2(E,ω) e−iωt



Chaoticity, ETH and Random Matrices

Chaotic behavior: Hamiltonian = Random Matrix
(WD distribution of energy levels)

ETH ' Eigenstates are random vectors

“random” behavior of rij, i.e. Aij with i 6= j
(empirical evidence)

universal “ergodic” behavior of observables 〈Ψ|A(t)|Ψ〉
for large t (after thermalization) ⇔ “structureless” or
Haar-invariant Aij
D’Alessio, Kafri, Polkovnikov, Rigol’15
Cotler et al., ’16, ’17



ETH reduces to RMT?

For small ω ≤ D/L2, f(ω) is constant and rnm is GOE

〈Ei|A|Ej〉 = Aethδnm + Ω−1/2f(ω)rij

D’Alessio, Kafri, Polkovnikov, Rigol’15

Gaussian distribution of rii and rij
Beugeling, Moessner, Haque’14, . . .

ratio 〈r2
ii〉 = 2〈r2

ij〉
AD and Liu, arxiv:1702.07722, Mondaini, Rigol’17

Expectation: ETH reduces to RMT at diffusion (Thouless)
energy |ω| ≤ ETh ≡ D/L2.



Thermalization – conventional picture

Diffusive system thermalizes within diffusion (Thouless)
time τ ∼ L2 necessary for the slowest diffusive modes to
propagate across the system. After time t ∼ τ the system
is fully ergodic (and naively, ETH should reduce to RMT).



The key idea: dynamics of “slowest transport
mode” constraints ∆ERMT



New technical ingredient – deviation function

connection between time evolution and linear algebra of Â

∫ ∞
−∞

dt
sin(t/T )

πt
〈Ψ|A(t)|Ψ〉 = 〈Ψ|


∗ � 0
� ∗

. . . ↙
∗ �

0 ↗� ∗


2/T

|Ψ〉

deviation function, arXiv:1702.07722

x(∆E) = λmax
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Uniform bound on averaged time evolution
Heuristic argument: after time t energies Ei, Ej,
|Ei − Ej|t ≥ 1 are mutually de-phased

〈Ψ|A(t)|Ψ〉 =
∑
ij

C∗i CjAije
−i(Ei−Ej)t ≈

∑
k

〈Ψk|A(t)|Ψk〉

from here, we have (naively):

|〈Ψ|δA(t)|Ψ〉| ≤ x(1/t)

Conjecture: uniform bound on time-averaged dynamics,
arxiv:1806.04187∣∣∣∣∫ ∞

−∞
dt

sin(t/T )

t
〈Ψ|δA(t)|Ψ〉

∣∣∣∣ ≤ 3x(1/t)



If observable is a Random Matrix

form-factor f 2(ω) =
∑

j r
2
ij δ(ω − Ei + Ej)

assuming fluctuations rij are independent maximal
eigenvalue of band random matrix is bounded by

x2(∆E) ≤ 8

2∆E∫
0

dω |f(ω)|2, A∆E =


∗ � 0
� ∗

. . . ↙
∗ �

0 ↗� ∗


2∆E

arXiv:1702.07722

� Gaussian Random Matrix, f 2 = const,

∆E(x) = x2/(8f 2), x ∝ ∆E1/2



Upper bound on ∆ERMT from transport

for sufficiently large T , such that T∆ERMT ≥ 1

max
Ψ

∣∣∣∣∫ dt
sin(πt/T )

t π
〈Ψ(t)|δA|Ψ(t)〉

∣∣∣∣2 ≤ ∫ dt
sin(πt/T )

t π
〈A(t)A(0)〉β

this is a consistency condition for the observable restricted to

an energy interval ∆ERM to be a random matrix



Quasi-classical thermalization through transport

a state Ψ with a macroscopic inhomogeneity of conserved
quantity (energy); 〈Ψ|δA(t)|Ψ〉 remains of order one for
Thouless time t ∼ τ , where δA = A− Aeth

〈Ψ|δA(t)|Ψ〉 ∼ e−t/τ

time τ grows polynomially with the system size L, τ ∼ L2/D

the deviation δA(t) averaged over time T

∫
dt〈Ψ|δA(t)|Ψ〉sin(πt/T )

πt
≈ 1

T

∫ T

0
dt〈Ψ|δA(t)|Ψ〉 ∼ τ

T



Behavior of autocorrelation function

When the system is chaotic (non-integrable, not MBL),
two-point function is diffusive

〈A(t)A(0)〉β(E) =
∫
dω f 2(E,ω) e−iωt

for late times, but before diffusion ends t < τ = L2/D,
diffusive Green’s function ∼ 1/td/2

after diffusion (Thouless) time τ = L2/D Green’s function
saturates, f 2(ω) becomes a plateau for small |ω| ≤ 1/τ

〈E|A(t)A(0)|E〉 ∼
{

1/
√
t t ≤ τ = L2/D

0 t ≥ τ = L2/D

autocorrelation function is well-behaved in L→∞ limit



Upper bound on ∆ERMT from slow states

for sufficiently large T , such that T∆ERMT ≥ 1

max
Ψ

∣∣∣∣∫ dt
sin(πt/T )

t π
〈Ψ(t)|δA|Ψ(t)〉

∣∣∣∣2 ≤ ∫ dt
sin(πt/T )

t π
〈A(t)A(0)〉β

LHS behaves as (τ/T )2, it grows polynomially with L

RHS (naively) behaves as 1/
√
T , which is L-independent

a bit more carefully, RHS is
√
τ/T for T > τ

( τ
T

)2
≤
√
τ

T
⇒ T ≥ τ3/2 ∼ L3



Result and interpretation

∆E−1
RM = T ≥ L3 � τ = L2/D

scale of applicability of Random Matrix Theory to
describe a local observable is parametrically smaller than
Thouless (diffusion) energy D/L2

potential interpretation: T is the time scale when
〈Ψ|δA(t)|Ψ〉 ∼ e−t/τ becomes as small as exponentially
small late time fluctuations, |〈Ψ|δA(t)|Ψ〉| ∼ e−S/2 (ETH)

T

τ
∼ S ∼ L⇒ T ∼ τL ∼ L3



Conclusions

Macroscopic transport constraints off-diagonal elements
of ETH ansatz. What is the right language to describe
statistical properties of matrix elements before Random
Matrix Theory is applicable?

The Random Matrix scale T = ∆E−1
RMT, when ETH

reduces to Random Matrix Theory is parametrically longer
than the diffusion (Thouless) time

Conjecture: Random Matrix Theory describes expectation
values 〈Ψ|A(t)|Ψ〉 at late times t > T ∼ L3. Then T is
the time of “universality”


