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Motivation

e Thermalization (dynamics) of many-body quantum

systems

e Connection between Eigenstate Themalization and
dynamics

e Role of Random Matrix Theory and relevant (time)scales



Thermalization of Quantum Systems

Eigenstate Thermalization Hypothesis

o Individual energy eigenstate is “thermal”
(Bi|A|E;) ~ Tr(pmicA) ~ Tr(e PHA) /Tr(e PH)

o “Eigenstate Ensemble” explains eventual thermalization
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Eigenstate Thermalization Hypothesis

o ETH ansatz
(Ei|A|E;) = A™(E)oy; + Q72 f(E,w)ry;

- FE= (EZ+EJ)/2, w:Eiij
- A°thf depend on energy density E/V

Deutsch’91  Srednicki’94; 99 Rigol, Dunjko, Olshanii’08
e Meaning of form-factor f(w):

(A1) A0)s = [ dw f*(E,w) e



Chaoticity, ETH and Random Matrices

o Chaotic behavior: Hamiltonian = Random Matrix
(WD distribution of energy levels)

e ETH ~ Eigenstates are random vectors

e “random” behavior of r;;, i.e. A;; with i # j
(empirical evidence)

e universal “"ergodic” behavior of observables (U|A(t)|¥)
for large t (after thermalization) < “structureless” or
Haar-invariant A;;

D’Alessio, Kafri, Polkovnikov, Rigol’15
Cotler et al., ’16, 17



ETH reduces to RMT?

e For small w < D/L?, f(w) is constant and 7, is GOE
<Ei|A|Ej> - Aethénm + Q_l/Qf@})rij

D’Alessio, Kafri, Polkovnikov, Rigol’15

e Gaussian distribution of r;; and 7;;
Beugeling, Moessner, Haque’14,

e ratio (1) = 2(r;)

AD and Liu, arxiv:1702.07722, Mondaini, Rigol’17

Expectation: ETH reduces to RMT at diffusion (Thouless)
energy |w| < Et, = D/L?.



Thermalization — conventional picture

Diffusive system thermalizes within diffusion (Thouless)
time 7 ~ L? necessary for the slowest diffusive modes to
propagate across the system. After time t ~ 7 the system
is fully ergodic (and naively, ETH should reduce to RMT).



The key idea: dynamics of “slowest transport
mode” constraints AErumT



New technical ingredient — deviation function

e connection between time evolution and linear algebra of A
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e deviation function, arXiv:1702.07722
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Uniform bound on averaged time evolution

o Heuristic argument: after time ¢ energies E;, F;,
|E; — E;|t > 1 are mutually de-phased

(TIAR)|T) = CrCiAie FimFl N " (W | A (L) Wy,)

i k
from here, we have (naively):

[(W[SA@®) )] < 2(1/1)

o Conjecture: uniform bound on time-averaged dynamics,
arxiv:1806.04187
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If observable is a Random Matrix

o form-factor f*(w) =>_.r% 0(w — E; + Ej)

Ju

e assuming fluctuations 7;; are independent maximal
eigenvalue of band random matrix is bounded by

* N\ 0
2AFE \ *
*(AFE) <8 / do|f(w)]?,  Aap= Y 4
0 N
0 /\U*
2AFE

arXiv:1702.07722
o Gaussian Random Matrix, f? = const,
AE(z) = 2%/(8f?), r o< AEY?



Upper bound on AEgryt from transport

o for sufficiently large T', such that TAEryr > 1
sin(wt/T sin(7t T
[ ysam| < [ a0 a0,

this is a consistency condition for the observable restricted to
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an energy interval AER), to be a random matrix



Quasi-classical thermalization through transport

e a state W with a macroscopic inhomogeneity of conserved
quantity (energy); (U|dA(t)|¥) remains of order one for
Thouless time t ~ 7, where A = A — A°th

(UI6A()| ) ~ et7
time 7 grows polynomially with the system size L, 7 ~ L?/D

e the deviation JA(t) averaged over time T

sin(rt/T) 1
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Behavior of autocorrelation function

When the system is chaotic (non-integrable, not MBL),
two-point function is diffusive

(A1) A0)) s = [ dw [2(E,w) e

o for late times, but before diffusion ends t < 7 = L?/D,
diffusive Green's function ~ 1/t%/2

o after diffusion (Thouless) time 7 = L?/D Green's function
saturates, f%(w) becomes a plateau for small |w| < 1/7

/vt t<7=1L%/D

Eamaoie ~{ VST HD

autocorrelation function is well-behaved in L — oo limit



Upper bound on AERryt from slow states

o for sufficiently large T', such that TAEryr > 1

/dt sm(ff/T)< ()5 AT (1) /d i m/T (A1) A0))s
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o LHS behaves as (7/T)?, it grows polynomially with L

o RHS (naively) behaves as 1/v/T, which is L-independent
a bit more carefully, RHS is \/7/T for T > 7

T\2 _ T 3/2 3
Y <X >0
(T) T =T



Result and interpretation

AERy=T>L*>7=1L%/D

e scale of applicability of Random Matrix Theory to
describe a local observable is parametrically smaller than
Thouless (diffusion) energy D/L?

e potential interpretation: 7' is the time scale when
(U|6A(t)|W) ~ e*/T becomes as small as exponentially
small late time fluctuations, [(U|SA(t)|¥)| ~ e/ (ETH)

T
~nS~L=>T~7L~IL?
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Conclusions

e Macroscopic transport constraints off-diagonal elements
of ETH ansatz. What is the right language to describe
statistical properties of matrix elements before Random
Matrix Theory is applicable?

o The Random Matrix scale T = AEgy;r, when ETH
reduces to Random Matrix Theory is parametrically longer
than the diffusion (Thouless) time

e Conjecture: Random Matrix Theory describes expectation
values (U] A(t)|¥) at late times ¢ > T ~ L3. Then T is
the time of “universality”



