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I Riemann zero data and Painléve transcendents

I Finite size corrections to Riemann zero data

I Finite size corrections in RMT scaling limits



Gap probabilities and Painléve transcedents
Painléve transcendents — solutions of one of six nonlinear 2nd
order differential equations, each with the property that no
moveable singular points are essential singularities.

There is a (non-autonomous) Hamiltonian theory (Malmquist).
The Hamiltonian satisfies a so-called Painléve equation in sigma

form, e.g. σPII, (σ′′)2 + 4σ′
(

(σ′)2 − tσ′ + σ
)
− a2 = 0.

Since the work of the Kyoto school (1980) it has been known that
gap probabilities in random matrix theory permit evaluations in
terms of sigma Painléve transcendents, e.g. (F. & Witte, 2004)
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Riemann zero data
Montgomery-Odlyzko law: the statistics of the large Riemann
zeros have the same distribution as the bulk eigenvalues of a large
complex Hermitian random matrix.

Veracity can be probed using a high precision, big data set due to
Odlyzko (∼ 2000). The data set begins with zero number
1023 + 985, 531, 550, and lists the next 109.
This occurs at the point s = 1/2 + iE in the complex s-plane with
E equal to
13066434408793621120027.3961465854 ≈ 1.30664344× 1022.



A grand challenge/ suggestion — underlying
determinantal point process for RZ?

Keating and Snaith (2000) hypothesised a U(N) random matrix
model for the leading corrections. Further developed by
Bogomolny and collaborators.

The eigenvalues e iθ = e i2πx/N of U(N) matrices form a
determinantal point process:

ρ(k)(x1, . . . , xk) = det
[
KN(xi , xj)

]k
i,j=1
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With N = 1√
12Λ

log
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)
, α = 1 + C

log(E/2π) , all results known to

date are consistent with
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The implied RMT challenge: a theory of finite size
corrections

Results from F. & Witte (2004) give
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A second order linear DE with σPV coefficients
We find that u(1)(X ) satisfies the second order, linear differential
equation

Ã(s)y ′′(s) + B̃(s)y ′(s) + C̃ (s)y(s) = D̃(s),

where, with u(s) = u(0)(s), Ã(s) = 8s2u′′(s). The other
coefficients are also explicit polynomials in {u(s), u′(s), u′′(s), s}.
The equation must be solved subject to the s → 0+ boundary
condition

u(1)(s) =
4

15
s2 − 13

6300
s4 +

ξ

1728π
s5 + O(s6).

Universality results give that all random matrices in a certain class
(for example complex Hermitian with independent entries from the
same zero mean, unit variance distribution) have, after scaling, the
same large N statistical properties. What about finite N
corrections?



Setting up the question in the bulk

Option 1

I Choose a unitary invariant ensemble, or a complex Wigner
ensemble. The simplest choice would be to consider GUE matrices.

I For complex Wigner ensembles the eigenvalue density will be to
leading order given by the Wigner semi-circle law, supported to
leading order on (−

√
2N,
√

2N). Use this density to unfold the
eigenvalues.

I Now compute the averaged spacing distribution for some finite
fraction of the eigenvalues about the origin.

I The task is to compute the large N form of this averaged spacing
distribution.

Option 2

I Instead of averaging over a finite fraction of the eigenvalues, ask
specifically about the spacing between, say, the two middle
eigenvalues.



Gap probabilities and correlations
Let E (n; J) denote the probability that the interval J contains
exactly n eigenvalues. Define the generating function G (J; ξ) by

G (J; ξ) :=
∞∑
n=0

(1− ξ)nE (n; J).

Specifically, G (J; ξ)|ξ=1 = E (0; J).

In terms of the k-point correlations ρ(k),

G (J; ξ) = 1 +
∞∑
k=1

(−ξ)k

k!

∫ a2

a1

dx1 · · ·
∫ a2

a1

dxk ρ(k)(x1, . . . , xk)

Remarks

I The sums terminate at N for a finite system.

I Can interpret G (J; ξ) as the probability that the interval J is free of
eigenvalues, in the setting that each eigenvalue has been deleted
independently with probability (1− ξ).



Spacing distributions and correlations

The PDF for the event that, given there is an eigenvalue at a1, the
next eigenvalue to the right is at a2, is given by

p((a1, a2)) = − 1

ρ(1)(a1)

∂2

∂a1∂a2
E (0; (a1, a2))

=
1

ρ(1)(a1)
ρ(2)(a1, a2) + · · ·

Note that this is relevant to Option 1 via the averaged quantity

p̄(s) :=

∫
p((a, a + s)) da =

∫
1

ρ(1)(a)
ρ(2)(a, a + s) da + · · ·

Difficult. Ask instead a related question: what are the properties of
the finite size correction at the soft edge (i.e. neighbourhood of
the largest eigenvalue).



Soft edge leading corrections
We have

pmax(s) =
d

ds

( ∞∑
k=1

(−1)k

k!

∫ ∞

s

dx1 · · ·
∫ ∞

s
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= ρ(1)(s)−
∫ ∞

s

ρ(2)(s, x) dx + · · ·

Introduce the scaled variable

sN,t =

{ √
2N + t/

√
2N1/6, GUE

4N + 2a + 2(2N)1/3t, LUE

F. & Trinh (2017) have shown that

pmax,N(t; ξ) = pmax,∞(t; ξ) +
1

N2/3
p̃(t; ξ) + O

( 1

N

)
.

We know that, with q′′ = sq + 2q3,

pmax,∞(t; ξ) =
d

dt
det(I− ξKAiry

(t,∞))

=
d
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exp

(
−
∫ ∞

t

(x − t)q2(x ; ξ) dx
)



Weak universality?

The function p̃(t; ξ) can be characterised as the solution of a 2nd
order linear differential equation with σPII coefficients. It is
different for the GUE and LUE.

Note subtlety in relation to the Laguerre case
sN,t = 4N + 2(2N)1/3t + 2a. What would happen if instead we set
sN,t = 4N + 2(2N)1/3t?

pmax,N(t+
c

N1/3
; ξ) = pmax,∞(t; ξ)+

c

N1/3

d

dt
pmax,∞(t; ξ)+O

( 1

N2/3

)
.

Hence, a non-optimal choice of scaling can be detected by the
“leading” correction term being related to the scaled limit as a
derivative.

Question: Can a soft edge scaling variable always be chosen so

that the optimal correction term is O
(

1
N2/3

)
?



A particular Wigner ensemble
Define X so that its entries are chosen independently and
uniformly from the set of four values 1√

2
(±1± i).

In terms of X define the Hermitian matrix Y = 1
2 (X + X †). Off

diagonal entries have mean zero and variance 1
2 . Hence to leading

order largest eigenvalue is equal to
√

2N.

Plot histograms associated with the scaled random variable
t =
√

2N1/6(λmax −
√

2N), minus pmax,∞(t) multiplied by N1/3

(left). Except for shifting by c = 1/2, this appears to be the graph
for d

dt pmax,∞(t). Replacing t by t − 1/(2N1/3) leads to a N−2/3

correction.
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Future work
Study optimal soft edge scaling for the density in Gaussian and
Laguerre beta ensemble with beta even. This is possible due to
certain duality formulas, e.g.〈

N∏
l=1

(
x −

√
2

β
xl
)n〉

GEβ,N

=

〈
n∏

j=1

(x − ixj)
N

〉
GE4/β,n

.

Find in the Gaussian case that choosing

λ =
√

2N +
1√

2N1/6

(
x +

(1

2
− 1

β

) 1

N1/3

)
gives optimal O(N−2/3) correction. For the Laguerre case, the

same (a dependent) scaling as for β = 2 is optimal.

For the unitary invariant ensemble with potential e−Nx
2m

a result
of Dieft and Gioev establishes m dependent values of b and γ so
that λ = b + x

N2/3γ
gives optimal O(N−2/3) correction.

Presently studying similar questions at the hard edge.


