Corrections to scaled limits in random matrix theory

Peter Forrester, University of Melbourne, Australia

» Riemann zero data and Painléve transcendents
» Finite size corrections to Riemann zero data

» Finite size corrections in RMT scaling limits
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Gap probabilities and Painléve transcedents

Painléve transcendents — solutions of one of six nonlinear 2nd
order differential equations, each with the property that no
moveable singular points are essential singularities.

There is a (non-autonomous) Hamiltonian theory (Malmquist).
The Hamiltonian satisfies a so-called Painléve equation in sigma
form, e.g. aPll, (¢")? + 40’((0’)2 —to’ + 0) —a2=0.

Since the work of the Kyoto school (1980) it has been known that

gap probabilities in random matrix theory permit evaluations in
terms of sigma Painléve transcendents, e.g. (F. & Witte, 2004)
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Riemann zero data
Montgomery-Odlyzko law: the statistics of the large Riemann
zeros have the same distribution as the bulk eigenvalues of a large
complex Hermitian random matrix.

Veracity can be probed using a high precision, big data set due to
Odlyzko (~ 2000). The data set begins with zero number

1023 + 985,531, 550, and lists the next 10°.

This occurs at the point s = 1/2 + /E in the complex s-plane with
E equal to

13066434408793621120027.3961465854 ~ 1.30664344 x 10%.

0.6

0.8l e=1 05F £=0.6
0.4}
0.6 :
+ Riemann zeros 63t
— extrapolation :
0.4+ * DE solution 02
0.2 0.1}




A grand challenge/ suggestion — underlying

determinantal point process for RZ?
Keating and Snaith (2000) hypothesised a U(N) random matrix
model for the leading corrections. Further developed by
Bogomolny and collaborators.
The eigenvalues e’ = e2™/N of U(N) matrices form a
determinantal point process:
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With N = \/ﬁ log (%) a=1+ m, all results known to

date are consistent with
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The implied RMT challenge: a theory of finite size
corrections
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Results from F. & Witte (2004) give
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A second order linear DE with ¢PV coefficients

We find that u(1)(X) satisfies the second order, linear differential
equation

A(s)y"(s) + B(s)y'(s) + C(s)y(s) = D(s),

where, with u(s) = u(%(s), A(s) = 8s2u”(s). The other
coefficients are also explicit polynomials in {u(s), v'(s), u”(s), s}
The equation must be solved subject to the s — 0 boundary
condition
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Universality results give that all random matrices in a certain class
(for example complex Hermitian with independent entries from the
same zero mean, unit variance distribution) have, after scaling, the
same large N statistical properties. What about finite N
corrections?



Setting up the question in the bulk
Option 1

» Choose a unitary invariant ensemble, or a complex Wigner
ensemble. The simplest choice would be to consider GUE matrices.

» For complex Wigner ensembles the eigenvalue density will be to
leading order given by the Wigner semi-circle law, supported to
leading order on (—+v/2N, v/2N). Use this density to unfold the
eigenvalues.

» Now compute the averaged spacing distribution for some finite
fraction of the eigenvalues about the origin.

» The task is to compute the large N form of this averaged spacing
distribution.
Option 2

» Instead of averaging over a finite fraction of the eigenvalues, ask
specifically about the spacing between, say, the two middle
eigenvalues.



Gap probabilities and correlations

Let E(n; J) denote the probability that the interval J contains
exactly n eigenvalues. Define the generating function G(J;¢&) by

o

G(J;&) =) _(1-&"E(n; J).

n=0
Specifically, G(J;&)|¢=1 = E(0; J).

In terms of the k-point correlations p(j,
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Remarks
» The sums terminate at N for a finite system.

» Can interpret G(J;¢) as the probability that the interval J is free of
eigenvalues, in the setting that each eigenvalue has been deleted
independently with probability (1 — &).



Spacing distributions and correlations

The PDF for the event that, given there is an eigenvalue at a1, the
next eigenvalue to the right is at ap, is given by
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p((a1,a2)) = E(0; (a1, a2))

Note that this is relevant to Option 1 via the averaged quantity
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Difficult. Ask instead a related question: what are the properties of
the finite size correction at the soft edge (i.e. neighbourhood of
the largest eigenvalue).



Soft edge leading corrections
We have
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Introduce the scaled variable

S V2N + t/\/2NY/6, GUE
NET 4N +2a+2(2N)Y3t, LUE

F. & Trinh (2017) have shown that

1 . 1
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We know that, with ¢ = sq + 24¢°,
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Weak universality?

The function p(t; £) can be characterised as the solution of a 2nd
order linear differential equation with Pl coefficients. It is
different for the GUE and LUE.

Note subtlety in relation to the Laguerre case
sy = 4N + 2(2N)Y/3t + 2a. What would happen if instead we set
sn.e = 4N +2(2N)Y/3¢?
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Hence, a non-optimal choice of scaling can be detected by the
“leading” correction term being related to the scaled limit as a
derivative.

Question: Can a soft edge scaling variable always be chosen so
that the optimal correction term is O(N2/3>7



A particular Wigner ensemble

Define X so that its entries are chosen independently and
uniformly from the set of four values f(:lzl +1).

In terms of X define the Hermitian matrix Y (X + XT). Off
diagonal entries have mean zero and variance 5. Hence to leading
order largest eigenvalue is equal to v2N.

Plot histograms associated with the scaled random variable

t = V2N (Amax — V2N), Minus prax.co(t) multiplied by N/3
(left). Except for shifting by ¢ = 1/2, this appears to be the graph
for & prax,co(t). Replacing t by t —1/(2NY/3) leads to a N=2/3
correction.




Future work

Study optimal soft edge scaling for the density in Gaussian and
Laguerre beta ensemble with beta even. This is possible due to
certain duality formulas, e.g.

N 2 \n n
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Find in the Gaussian case that choosing

A= V2N + \@1\/1/6 (X+ (%_%)#>

gives optimal O(N~2/3) correction. For the Laguerre case, the
same (a dependent) scaling as for 8 = 2 is optimal.

For the unitary invariant ensemble with potential e~ N 3 result

of Dieft and Gioev establishes m dependent values of b and v so
that A = b+ 5775 gives optimal O(N—2/3) correction.

Presently studying similar questions at the hard edge.



