What drives transient behaviour in complex systems?

Jacek Grela

Queen Mary University of London

October 4, 2018

Random Matrices, Integrability and Complex Systems

Yad Hashmona

based on Phys. Rev. E 96, 022316
Outline

- Motivation(s)
- May-Wigner and beyond
- Generators of transient behaviour
Choose a dynamical complex system
Description: \[
\frac{dx_i}{dt} = f_i(x_1...x_N), \quad i = 1...N
\]
Examples
1. Lotka-Volterra \[f_i = x_i(1 - \sum_j \alpha_{ij}x_j) \]
2. deep learning \[f_i = \tanh(\sum_j C_{ij}x_j) \]
Choose a dynamical complex system

Description: \(\frac{dx_i}{dt} = f_i(x_1...x_N), \quad i = 1...N \)

Examples
1. Lotka-Volterra \(f_i = x_i(1 - \sum_j \alpha_{ij}x_j) \)
2. deep learning \(f_i = \tanh\left(\sum_j C_{ij}x_j\right) \)

Rich dynamics – fixed points, limit cycles and *strange* attractors
Motivation

- Choose a dynamical complex system
 Description: $\frac{dx_i}{dt} = f_i(x_1...x_N)$, $i = 1...N$

Examples
 1. Lotka-Volterra $f_i = x_i(1 - \sum_j \alpha_{ij}x_j)$
 2. Deep learning $f_i = \tanh\left(\sum_j C_{ij}x_j\right)$

- Rich dynamics – fixed points, limit cycles and *strange* attractors
- Simplest case – stability analysis $x_i = x_i^* + y_i$ for $f_i(x^*) = 0$
Motivation

- Choose a dynamical complex system

 Description: \(\frac{dx_i}{dt} = f_i(x_1...x_N), \quad i = 1...N \)

Examples

1. Lotka-Volterra \(f_i = x_i(1 - \sum_j \alpha_{ij}x_j) \)
2. deep learning \(f_i = \tanh \left(\sum_j C_{ij}x_j \right) \)

- Rich dynamics – fixed points, limit cycles and strange attractors
- Simplest case – stability analysis \(x_i = x_i^* + y_i \) for \(f_i(x^*) = 0 \)

 Linear equation for deviations:

 \[
 \frac{dy_i}{dt} = \sum_{j=1}^{N} M_{ij}y_j, \quad M_{ij} = \partial_{x_j} f_i(x) |_{x=x^*}
 \]
Motivation

- Choose a dynamical complex system
 Description: \(\frac{dx_i}{dt} = f_i(x_1...x_N), \quad i = 1...N \)

Examples
 1. Lotka-Volterra \(f_i = x_i(1 - \sum_j \alpha_{ij}x_j) \)
 2. deep learning \(f_i = \tanh \left(\sum_j C_{ij}x_j \right) \)

- Rich dynamics – fixed points, limit cycles and strange attractors
- Simplest case – stability analysis \(x_i = x_i^* + y_i \) for \(f_i(x^*) = 0 \)
 Linear equation for deviations:
 \[
 \frac{dy_i}{dt} = \sum_{j=1}^{N} M_{ij}y_j, \quad M_{ij} = \partial_{x_j} f_i(x)|_{x=x^*}
 \]

- Inspect eigenvalues of \(M \)
Motivation

- Choose a dynamical complex system
 \[\frac{dx_i}{dt} = f_i(x_1...x_N), \quad i = 1...N \]

Examples

1. Lotka-Volterra \(f_i = x_i(1 - \sum_j \alpha_{ij}x_j) \)
2. deep learning \(f_i = \tanh(\sum_j C_{ij}x_j) \)

- Rich dynamics – fixed points, limit cycles and strange attractors
- Simplest case – stability analysis \(x_i = x_i^* + y_i \) for \(f_i(x^*) = 0 \)
 \[\frac{dy_i}{dt} = \sum_{j=1}^{N} M_{ij}y_j, \quad M_{ij} = \partial_{x_j} f_i(x)|_{x=x^*} \]

- Inspect eigenvalues of \(M \)

![Graph showing intermediate and late time behaviors](image-url)
Motivation

- Eigenvalues of M – late time analysis
Motivation

- Eigenvalues of M – late time analysis
- What about intermediate or early times? Hard in general...

\[|y(t)|^2 = \sum_i |y_i|^2 \]

Two indicators:
- Amplification: $A = \max_{t \geq 0} |y(t)|^2 |y_0|^2$
- Reactivity: $R = \frac{1}{|y_0|^2} \lim_{t \to 0} \int |y(t)|^2 \, dt$,

where y_0 is the initial condition.
Motivation

- Eigenvalues of M – late time analysis
- What about intermediate or early times? Hard in general...
- A tangible feature – **transient (growth) behaviour**

\[|y(t)|^2 = \sum_i y_i^2 \text{ is the norm.} \]
Motivation

- Eigenvalues of M – late time analysis
- What about intermediate or early times? Hard in general...
- A tangible feature – transient (growth) behaviour

\[|y(t)|^2 = \sum_i y_i^2 \]

where $|y(t)|^2 = \sum_i y_i^2$ is the norm.

- Two indicators **amplification** and **reactivity**:

\[A = \max_{t \geq 0} \frac{|y(t)|^2}{|y_0|^2}, \quad R = \frac{1}{|y_0|^2} \lim_{t \to 0} \frac{d|y(t)|^2}{dt}, \]

where y_0 is the initial condition.
Motivation

- For a linear model the solution (bra-ket notation):

\[|y(t)⟩ = e^{Mt} |y_0⟩, \]

The norm is

\[⟨y(t)|y(t)⟩ = ⟨y_0|e^{MT}e^{Mt}|y_0⟩, \]

and so the reactivity

\[R = ⟨y_0|(M^T + M)|y_0⟩ associated with

we have

\[A = \max_{t \geq 0} (1 + Rt + O(t^2)) \]
For a linear model the solution (bra-ket notation):

\[|y(t)\rangle = e^{Mt} |y_0\rangle, \]

The norm is

\[\langle y(t) | y(t) \rangle = \langle y_0 | e^{M^T t} e^{Mt} | y_0 \rangle \]
Motivation

- For a linear model the solution (bra-ket notation):

\[|y(t)\rangle = e^{Mt} |y_0\rangle, \]

- The norm is

\[\langle y(t)|y(t)\rangle = \langle y_0| e^{M^T t} e^{Mt} |y_0\rangle \]

- and so the reactivity

\[R = \frac{\langle y_0| (M^T + M)|y_0\rangle}{\langle y_0|y_0\rangle}, \]
Motivation

- For a linear model the solution (bra-ket notation):
 \[|y(t)\rangle = e^{Mt} |y_0\rangle, \]

- The norm is
 \[\langle y(t)|y(t)\rangle = \langle y_0| e^{M^Tt} e^{Mt} |y_0\rangle \]

- and so the reactivity
 \[R = \frac{\langle y_0|(M^T + M)|y_0\rangle}{\langle y_0|y_0\rangle}, \]

- we have \(A = \max_{t \geq 0} (1 + Rt + O(t^2)). \)
Motivation

- When does it show up? M must be **asymmetric**. Not concrete enough!

Does it matter? It does, at least for fluids, brains and ecosystems (Neubert & Caswell 1997 – rainforest compartment model)

Consider the following mass–energy flow diagram:
Motivation

- When does it show up? M must be \textit{asymmetric}. Not concrete enough!
- Does it matter? It does, at least for fluids, brains and \textit{ecosystems}
Motivation

- When does it show up? M must be **asymmetric**. Not concrete enough!
- Does it matter? It does, at least for fluids, brains and **ecosystems**
- Neubert & Caswell 1997 – *rainforest compartment model*
Motivation

- When does it show up? M must be asymmetric. Not concrete enough!
- Does it matter? It does, at least for fluids, brains and ecosystems
- Neubert & Caswell 1997 – rainforest compartment model
- Consider the following mass–energy flow diagram:
The model is of the same form:

\[
\frac{dy_i}{dt} = \sum_{j=1}^{9} M_{ij}y_j,
\]
Motivation

- The model is of the same form:

\[
\frac{dy_i}{dt} = \sum_{j=1}^{9} M_{ij} y_j,
\]

- the matrix \(M \):

<table>
<thead>
<tr>
<th>Compartment and number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td>1</td>
<td>-1.5622†</td>
<td>0.6685</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stems</td>
<td>2</td>
<td>-0.7119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litter</td>
<td>3</td>
<td>1.4627</td>
<td>0.0364</td>
<td>-6.4091</td>
<td></td>
<td>1.1446</td>
<td></td>
<td>55.8201</td>
<td>17.2972</td>
</tr>
<tr>
<td>Soil</td>
<td>4</td>
<td></td>
<td>-0.0222</td>
<td></td>
<td></td>
<td>1.4463</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roots</td>
<td>5</td>
<td></td>
<td>0.0201</td>
<td>-2.5632</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and flowers</td>
<td>6</td>
<td></td>
<td>0.0070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritivores</td>
<td>7</td>
<td></td>
<td>6.4091</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbivores</td>
<td>8</td>
<td>0.0995</td>
<td></td>
<td></td>
<td></td>
<td>0.8902</td>
<td></td>
<td>-62.6458</td>
<td></td>
</tr>
<tr>
<td>Carnivores</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.8257</td>
<td>-17.2972</td>
</tr>
</tbody>
</table>

† All entries are in units of yr\(^{-1}\).
Motivation

- The model is of the same form:

\[
\frac{dy_i}{dt} = \sum_{j=1}^{9} M_{ij}y_j,
\]

- the matrix \(M \):

<table>
<thead>
<tr>
<th>Compartment and number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td>1</td>
<td>-1.5622</td>
<td>0.6685</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stems</td>
<td>2</td>
<td>-0.7119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litter</td>
<td>3</td>
<td>1.4627</td>
<td>0.0364</td>
<td>-6.4091</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td>4</td>
<td></td>
<td>-0.0222</td>
<td></td>
<td>1.1446</td>
<td></td>
<td></td>
<td></td>
<td>315.9443</td>
</tr>
<tr>
<td>Roots</td>
<td>5</td>
<td></td>
<td>0.0201</td>
<td>-2.5632</td>
<td></td>
<td></td>
<td></td>
<td>55.8201</td>
<td>17.2972</td>
</tr>
<tr>
<td>Fruits and flowers</td>
<td>6</td>
<td></td>
<td>0.0070</td>
<td></td>
<td></td>
<td>-2.0348</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detritivores</td>
<td>7</td>
<td></td>
<td></td>
<td>6.4091</td>
<td></td>
<td></td>
<td>-315.9443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbivores</td>
<td>8</td>
<td>0.0995</td>
<td></td>
<td></td>
<td>0.8902</td>
<td></td>
<td>-62.6458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnivores</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.8257</td>
<td></td>
<td>-17.2972</td>
<td></td>
</tr>
</tbody>
</table>

|† All entries are in units of yr\(^{-1}\).|

- all eigenvalues of \(M \) are negative – stable!
Motivation

- (late time behaviour) Largest eigenvalue of M: -0.002 yr^{-1}
Motivation

- (late time behaviour) Largest eigenvalue of M: -0.002 yr^{-1}
- (early time behaviour) (maximal) reactivity $\max_{y_0} R = 65.4 \text{ yr}^{-1}$
Motivation

- (late time behaviour) Largest eigenvalue of M: -0.002 yr^{-1}
- (early time behaviour) (maximal) reactivity $\max_y R = 65.4 \text{ yr}^{-1}$
- very different timescales!
Motivation

- (late time behaviour) Largest eigenvalue of M: -0.002 yr^{-1}
- (early time behaviour) (maximal) reactivity $\max_{y_0} R = 65.4 \text{ yr}^{-1}$
- very different timescales!

Plot of $\max_{y_0} \frac{|y(t)|^2}{|y_0|^2}$ in log-plot:

a giant amplification
May-Wigner model

(Lord May 1973) Consider a model:

\[
\frac{dy_i}{dt} = \sum_{j=1}^{N} M_{ij} y_j,
\]

\(M\) will be of size \(N \times N\):

\[M = -\mu 1_N + X\]

where \(\mu > 0\) (what is it?) and \(X\) is random drawn from:

\[P(X)[dX] \sim \exp \left(-\frac{N}{2\sigma^2} \text{Tr}X^T X \right) [dX],\]
May-Wigner model

- Late time behaviour – eigenvalues of M. Asymptotic ($N \to \infty$) density:

$$\rho_M(x, y) = \frac{1}{\pi \sigma^2} \theta \left(\sigma^2 - (x + \mu)^2 - y^2 \right),$$

or the circular law (only translated)

$$\begin{array}{cccccc}
\mu & \text{density} & \rho_M & \text{unstable} & \text{stable} \\
-3 & -2 & -1 & 0 & 1 \\
-3 & -2 & -1 & 0 & 1 \\
\end{array}$$
May-Wigner model

- Late time behaviour – eigenvalues of M. Asymptotic ($N \to \infty$) density:

$$\rho_M(x, y) = \frac{1}{\pi \sigma^2} \theta \left(\sigma^2 - (x + \mu)^2 - y^2 \right),$$

or the circular law (only translated)

- Vary μ (or vary σ)
May-Wigner model

- Late time behaviour – eigenvalues of M. Asymptotic ($N \to \infty$) density:

$$
\rho_M(x, y) = \frac{1}{\pi\sigma^2} \theta (\sigma^2 - (x + \mu)^2 - y^2),
$$

or the circular law (only translated)

- Vary μ (or vary σ)

- System is stable if $\mu < \mu_s$ and unstable when $\mu > \mu_s$ for $\mu_s = \sigma$.

Phase space is one-dimensional:
Beyond May-Wigner model

- How to include transients? Find a proper observable.
Beyond May-Wigner model

- How to include transients? Find a proper **observable**.
- Treating randomness by averaging over X: $\overline{O} = \int [dX] P(X) O(X)$.
Beyond May-Wigner model

- How to include transients? Find a proper observable.
- Treating randomness by averaging over \(X \):
 \[\overline{O} = \int [dX] P(X) O(X). \]
- Treating initial conditions:
 1. Averaged over \(O_{av} = \langle O(y_0) \rangle_{y_0} = \int [dy_0] \beta p_0(y_0) O(y_0) \)
 2. Maximized \(O_{max} = \max_{y_0} O \),

\[R_{max} = \max_{y_0} \langle y_0 | (M^T + M) | y_0 \rangle \langle y_0 | y_0 \rangle = \lambda_{max}(M^T + M) \]

In the asymptotic \(N \to \infty \) limit:
\[\lim_{N \to \infty} \langle R_{max} \rangle_{X} = -2 \mu + 2 \mu_T, \quad \mu_T = \sqrt{2} \sigma \]
which is found by using the Wigner's semicircle law for the eigenvalues of \(M^T + M \).
Beyond May-Wigner model

- How to include transients? Find a proper **observable**.
- Treating randomness by averaging over X: $\overline{O} = \int [dX] P(X) O(X)$.
- Treating initial conditions:
 1. averaged over $O_{av} = \langle O(y_0) \rangle_{y_0} = \int [dy_0] \beta p_0(y_0) O(y_0)$
 2. maximized $O_{max} = \max_{y_0} O$,
- Measuring transient behaviour – study the sign of reactivity R...
Beyond May-Wigner model

- How to include transients? Find a proper observable.
- Treating randomness by averaging over X: $\overline{O} = \int [dX]P(X)O(X)$.
- Treating initial conditions:
 1. averaged over $O_{av} = \langle O(y_0) \rangle_{y_0} = \int [dy_0] \beta p(y_0) \beta O(y_0)$
 2. maximized $O_{max} = \max_{y_0} O$
- Measuring transient behaviour – study the sign of reactivity R...
- ...or R_{max} – the X-averaged worst case scenario.
Beyond May-Wigner model

- How to include transients? Find a proper observable.
- Treating randomness by averaging over X: $\overline{O} = \int [dX] P(X) O(X)$.
- Treating initial conditions:
 1. Averaged over $O_{av} = \langle O(y_0) \rangle_{y_0} = \int [dy_0] p_0(y_0) O(y_0)$
 2. Maximized $O_{max} = \max_{y_0} O$,
- Measuring transient behaviour – study the sign of reactivity R...
- ...or R_{max} – the X-averaged worst case scenario.
- We compute it easily:

$$R_{max} = \max_{y_0} \frac{\langle y_0 | (M^T + M) | y_0 \rangle}{\langle y_0 | y_0 \rangle} = \lambda_{max} \left(M^T + M \right).$$
Beyond May-Wigner model

- How to include transients? Find a proper observable.
- Treating randomness by averaging over X: $\overline{O} = \int [dX] P(X) O(X)$.
- Treating initial conditions:
 1. averaged over $O_{\text{av}} = \langle O(y_0) \rangle_{y_0} = \int [dy_0] \beta p_0(y_0) O(y_0)$
 2. maximized $O_{\text{max}} = \max_{y_0} O$
- Measuring transient behaviour – study the sign of reactivity R
- ...or R_{max} – the X-averaged worst case scenario.
- We compute it easily:
 $$R_{\text{max}} = \max_{y_0} \frac{\langle y_0 | (M^T + M) | y_0 \rangle}{\langle y_0 | y_0 \rangle} = \lambda_{\text{max}} \left(M^T + M \right).$$
- In the asymptotic $N \to \infty$ limit:
 $$\lim_{N \to \infty} \langle R_{\text{max}} \rangle_X = -2\mu + 2\mu_T, \quad \mu_T = \sqrt{2}\sigma$$
 which is found by using the Wigner’s semicircle law for the eigenvalues of $M^T + M$.
Beyond May-Wigner model

- stable transient if $R_{\text{max}} > 0$ and stable non-transient $R_{\text{max}} < 0$
Beyond May-Wigner model

- stable transient if $R_{\text{max}} > 0$ and stable non-transient $R_{\text{max}} < 0$
- A new window opens in the phase space of the model:

\[
\begin{align*}
\mu &= 0.5\sigma \\
\mu &= \mu_S \\
\mu &= \mu_T \\
\mu &= 2\sigma
\end{align*}
\]

Voilà, new regime!

But... We see that $R_{\text{av}} = -2\mu < 0$. What is then its nature?
Beyond May-Wigner model

- stable transient if $R_{\text{max}} > 0$ and stable non-transient $R_{\text{max}} < 0$
- A new window opens in the phase space of the model:

\[
\begin{align*}
\mu = 0.5\sigma & \quad \mu = \mu_S & \quad \mu = \mu_T & \quad \mu = 2\sigma \\
\text{unstable} & \quad \text{stable transient} & \quad \text{stable non-transient} & \quad \text{stable transient}
\end{align*}
\]

- Voilà, new regime!
Beyond May-Wigner model

- stable transient if $R_{\text{max}} > 0$ and stable non-transient $R_{\text{max}} < 0$
- A new window opens in the phase space of the model:

```
\[ \mu = 0.5 \sigma \quad \mu = \mu_S \quad \mu = \mu_T \quad \mu = 2 \sigma \]
```
- Voilà, new regime!
- But... We see that $\bar{R}_{av} = -2\mu < 0$. What is then its nature?
More on stable transient regime

- Inspect the distribution of reactivity

\[g(r) = \delta(r - R(y_0)) \]
More on stable transient regime

- Inspect the distribution of reactivity
 \[g(r) = \delta(r - R(y_0)) \]

- Compute two variants
 1. \[\overline{g_{\text{av}}}(r) = \langle g(r) \rangle_{X, y_0} \]
 2. \[\overline{g_{\max}}(r) = \left\langle \max_{y_0} g(r) \right\rangle_X \]
More on stable transient regime

- Inspect the distribution of reactivity
 \[g(r) = \delta(r - R(y_0)) \]

- Compute two variants
 1. \[\overline{g_{av}}(r) = \langle g(r) \rangle_{X,y_0} \]
 2. \[\overline{g_{max}}(r) = \left\langle \max_{y_0} g(r) \right\rangle_X \]

- In one case \(y_0 \) is particular, in the other it is typical
More on stable transient regime

- Inspect the distribution of reactivity
 \[g(r) = \delta(r - R(y_0)) \]

- Compute two variants
 1. \[\overline{g_{av}}(r) = \langle g(r) \rangle_{X,y_0} \]
 2. \[\overline{g_{max}}(r) = \langle \max_{y_0} g(r) \rangle_X \]

- In one case \(y_0 \) is particular, in the other it is typical
- Averaged variant is found by completing the square
 \[\overline{g_{av}}(r) = \frac{1}{\sqrt{2\pi\sigma_R^2}} e^{-\frac{(r+2\mu)^2}{2\sigma_R^2}}, \quad \sigma_R^2 = 4\sigma^2/N \]
More on stable transient regime

- Inspect the distribution of reactivity

 \[g(r) = \delta(r - R(y_0)) \]

- Compute two variants
 1. \(\overline{g_{av}}(r) = \langle g(r) \rangle_{X,y_0} \)
 2. \(\overline{g_{max}}(r) = \langle \max_{y_0} g(r) \rangle_X \)

- In one case \(y_0 \) is particular, in the other it is typical
- Averaged variant is found by completing the square

 \[\overline{g_{av}}(r) = \frac{1}{\sqrt{2\pi\sigma^2_R}} e^{-\frac{(r+2\mu)^2}{2\sigma^2_R}}, \quad \sigma^2_R = 4\sigma^2 / N \]

- The extreme variant is the GOE Tracy-Widom distribution

 \[\overline{g_{max}}(r) = \langle \delta \left(r + 2\mu - \lambda_{max}(X^T + X) \right) \rangle_X = \frac{d}{dr} F_{N,\beta=1} \left(\frac{\sqrt{N}}{\sigma} \left(\mu + \frac{r}{2} \right) \right) \]
The abundance of transient trajectories:

\[N_{\text{max}} = \int_{0}^{\infty} g_{\text{max}}(r) dr, \quad N_{\text{av}} = \int_{0}^{\infty} g_{\text{av}}(r) dr. \]

\[N_{\text{max}}(\mu) = 1 - F_{N,\beta=1} \left(\frac{\sqrt{N\mu}}{\sigma} \right), \quad N_{\text{av}}(\mu) = \frac{1}{2} \text{erfc} \left(\frac{\sqrt{N\mu}}{\mu_T} \right). \]
The abundance of transient trajectories:

\[
\bar{N}_{\text{max}} = \int_0^\infty g_{\text{max}}(r) \, dr, \quad \bar{N}_{\text{av}} = \int_0^\infty g_{\text{av}}(r) \, dr.
\]

\[
\bar{N}_{\text{max}}(\mu) = 1 - F_{N, \beta=1} \left(\frac{\sqrt{N\mu}}{\sigma} \right), \quad \bar{N}_{\text{av}}(\mu) = \frac{1}{2} \text{erfc} \left(\sqrt{N} \frac{\mu}{\mu_T} \right).
\]
The abundance of transient trajectories:

\[
\overline{N}_{\text{max}} = \int_0^\infty g_{\text{max}}(r) dr, \quad \overline{N}_{\text{av}} = \int_0^\infty g_{\text{av}}(r) dr.
\]

\[
\overline{N}_{\text{max}}(\mu) = 1 - F_{N,\beta=1} \left(\frac{\sqrt{N \mu}}{\sigma} \right), \quad \overline{N}_{\text{av}}(\mu) = \frac{1}{2} \text{erfc} \left(\frac{\sqrt{N \mu}}{\mu_T} \right).
\]

![Graph showing the relationship between \(N_{\text{max}}\) and \(N_{\text{av}}\) with \(\mu\) as the independent variable, indicating stable and transient regimes.]

- transient trajectories are (potentially) present in the whole transient regime \(\mu \in (\mu_S, \mu_T)\) as shown by the behaviour of \(\overline{N}_{\text{max}}\), they are otherwise uncommon as dictated by \(\overline{N}_{\text{av}}\).
Transient behaviour generators

\[X = O (Z + T) O^T, \]

where \(T \) is block-upper triangular (eigenvectors), \(Z \) block-diagonal (eigenvalues) and \(O \) orthogonal.

Go back to reactivity \(R \) and compute the \(X \) average as decomposed

\[\langle R \rangle_X = -2\mu + 1 \langle y_0 | y_0 \rangle (\langle y_0 | Z^T + Z \rangle_X | y_0 \rangle + \langle y_0 | T^T + T \rangle_X | y_0 \rangle) \]

In May-Wigner model, both terms vanish.

Introduce a modification of the model – fix \(T \) and leave the \(Z \) unchanged so that only one vanishes.
Transient behaviour generators

- To understand, consider Schur decomposition:

\[X = O(Z + T)O^T, \]

where \(T \) is block-upper triangular (eigenvectors), \(Z \) block-diagonal (eigenvalues) and \(O \) orthogonal.

Go back to reactivity \(R \) and compute the \(X \) average as decomposed into two parts

\[\langle R \rangle_X = -2 \mu + \langle y_0 | y_0 \rangle (\langle y_0 | Z^T + Z \rangle_X | y_0 \rangle + \langle y_0 | T^T + T \rangle_X | y_0 \rangle) \]

In May-Wigner model, both terms vanish.

Introduce a modification of the model – fix \(T \) and leave the \(Z \) unchanged so that only one vanishes.
Transient behaviour generators

- To understand, consider Schur decomposition:

\[X = O(Z + T)O^T, \]

where \(T \) is block-upper triangular (eigenvectors), \(Z \) block-diagonal (eigenvalues) and \(O \) orthogonal.
- Go back to reactivity \(R \) and compute the \(X \) average as decomposed into two parts

\[\langle R \rangle_X = -2\mu + \frac{1}{\langle y_0|y_0 \rangle} \left(\langle y_0|\left\langle Z^T + Z \right\rangle_X |y_0 \rangle + \langle y_0|\left\langle T^T + T \right\rangle_X |y_0 \rangle \right) \]

In May-Wigner model, both terms vanish.
- Introduce a modification of the model – fix \(T \) and leave the \(Z \) unchanged so that only one vanishes.
Transient behaviour generators

- To understand, consider Schur decomposition:

\[X = O(Z + T)O^T, \]

where \(T \) is block-upper triangular (eigenvectors), \(Z \) block-diagonal (eigenvalues) and \(O \) orthogonal.
- Go back to reactivity \(R \) and compute the \(X \) average as decomposed into two parts

\[
\langle R \rangle_X = -2\mu + \frac{1}{\langle y_0|y_0 \rangle} \left(\langle y_0|\langle Z^T + Z \rangle_X |y_0 \rangle + \langle y_0|\langle T^T + T \rangle_X |y_0 \rangle \right)
\]

- In May-Wigner model, both terms vanish.
Transient behaviour generators

- To understand, consider Schur decomposition:

\[X = O(Z + T)O^T, \]

where \(T \) is block-upper triangular (eigenvectors), \(Z \) block-diagonal (eigenvalues) and \(O \) orthogonal.

- Go back to reactivity \(R \) and compute the \(X \) average as decomposed into two parts

\[\langle R \rangle_X = -2\mu + \frac{1}{\langle y_0|y_0 \rangle} \left(\langle y_0|\langle Z^T + Z \rangle_X |y_0 \rangle + \right. \]
\[\left. + \langle y_0|\langle T^T + T \rangle_X |y_0 \rangle \right) \]

- In May-Wigner model, both terms vanish.
- Introduce a modification of the model – fix \(T \) and leave the \(Z \) unchanged so that only one vanishes.
Propose a fixed T_0 model:

$$\tilde{P}(X; T_0)[dX] \sim \delta(T - T_0)P(X)[dX],$$
Transient behaviour generators

- Propose a fixed T_0 model:

$$\tilde{P}(X; T_0)[dX] \sim \delta(T - T_0)P(X)[dX],$$

- Seems artificial but has two properties:
 1. Does not spoil stability (eigenvalues stay in place)
 2. Does modify reactivity (transient regime!)
Transient behaviour generators

- Propose a fixed T_0 model:

$$\tilde{P}(X; T_0)[dX] \sim \delta(T - T_0)P(X)[dX],$$

- Seems artificial but has two properties:
 1. Does not spoil stability (eigenvalues stay in place)
 2. Does modify reactivity (transient regime!)

- T_0 resembles an external field:

$$\langle R \rangle_{\tilde{p}} = -2\mu + \tau, \quad \tau = \frac{\langle y_0| T_0 T + T_0| y_0 \rangle}{\langle y_0| y_0 \rangle},$$
Propose a fixed T_0 model:

$$\tilde{P}(X; T_0)[dX] \sim \delta(T - T_0)P(X)[dX],$$

Seems artificial but has two properties:

1. Does not spoil stability (eigenvalues stay in place)
2. Does modify reactivity (transient regime!)

T_0 resembles an external field:

$$\langle R \rangle_{\tilde{p}} = -2\mu + \tau, \quad \tau = \frac{\langle y_0| T_0^T + T_0 |y_0 \rangle}{\langle y_0| y_0 \rangle},$$

...or a (not so distant) echo of eigenvectors.
Transient behaviour generators

- Phase space is now two-dimensional with proper transient regime:

\[\frac{\mu}{\sigma}, \frac{\tau}{\sigma} \]

- Transient
- Non-transient

\(|y(t)|^2 \) vs. \(t \)

(a) unstable
(b) transient
(c) non-transient
(d) stable

\(\tau = 2\mu \)

Normal X
Recap and Future

Recap:

- Transient behaviour is an early time phenomenon abundant in real-life systems.
- May-Wigner model contains a regime of parameters where transient dynamics is present although rare.
- Transient trajectories are generated by eigenvector degrees of freedom.

Future:

- Reactivity is not an exact measure of transient behaviour.
- What about t_{max} or amplification?
- Statistics of the norm $|y(t)|^2$ (variance and beyond).
- Echoes of transient behaviour in the chaotic phase.
Recap:
- Transient behaviour is an early time phenomenon abundant in real-life systems
- May-Wigner model contains a regime of parameters where transient dynamics is present although rare
- Transient trajectories are generated by eigenvector degrees of freedom

Future:
- Reactivity is not an exact measure of transient behaviour
- What about t_{max}? or amplification?
- Statistics of the norm $|y(t)|^2$ (variance and beyond)
- Echoes of transient behaviour in the chaotic phase