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@ Choose a dynamical complex system
Description: % = fi(x1...xn), i=1.N
Examples
@ Lotka-Volterra f; = x;(1 — 3 ajx;)
@ deep learning f; = tanh <ZJ C,-J-xj)
@ Rich dynamics — fixed points, limit cycles and strange attractors
@ Simplest case — stability analysis x; = x;* + y; for fi(x*) =0
Linear equation for deviations:
dy; N
1
E = JZl MUYja Mij = axj-fi(x)\X:x*

@ Inspect eigenvalues of M
x(t)

M

intermediate time late time
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Motivation

o Eigenvalues of M — late time analysis
@ What about intermediate or early times? Hard in general...

e A tangible feature — transient (growth) behaviour
ly1*

stable transient

stable non-transient u7table
______________ —_—  _t
where |y(t)|?> =Y, y? is the norm.
e Two indicators amplification and reactivity:
2 1 dly(t)|?
A—max|y()‘7 R = lim |y()\7
20 |yo|? lyol2 t—0  dt

where yq is the initial condition.
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Motivation

@ For a linear model the solution (bra-ket notation):

(1)) = " |yo),

@ The norm is

(B)y(8) = (vol ™"t eM |yo)

@ and so the reactivity

(Yol(MT + M)|yo)

R= (volyo)

@ we have A = max (1+ Rt +O(t?)).
t>
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Motivation

@ When does it show up? M must be asymmetric. Not concrete
enough!

@ Does it matter? It does, at least for fluids, brains and ecosystems
@ Neubert & Caswell 1997 — rainforest compartment model
e Consider the following mass—energy flow diagram:
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@ The model is of the same form:

@ the matrix M:

TaBLE 2. Transfer matrix for elemental dynamics in a Panamanian tropical forest (cf. McGinnis et al. 1969).

dy; 2
o = 2 M

Jj=1

Compartment’
and number

1

2

Leaves 1
Stems 2
Litter 3
Soil 4
Roots 5
Fruits and
flowers 6
Detritivores 7
Herbivores 8
Carnivores 9

—1.5622%
1.4627

0.0995

0.6685
0.7119
0.0364

0.0070

—0.0222
0.0201 —2.5632

6.4091

55.8201
315.9443

—315.9443
—62.6458
6.8257

17.2972

17.2972

1 All entries are in units of yr'.



Motivation

@ The model is of the same form:

dy; 2
o = 2 M

Jj=1

@ the matrix M:

TaBLE 2. Transfer matrix for elemental dynamics in a Panamanian tropical forest (cf. McGinnis et al. 1969).

Compartment’
and number 1 2 3 4 5 6 7 8 9
Leaves 1 —-1.5622% 0.6685
Stems 2 0.7119 2.5632
Litter 3 1.4627 0.0364 —6.4091 1.1446 55.8201 17.2972
Soil 4 —0.0222 315.9443
Roots 5 0.0201 —2.5632
Fruits and
flowers 6 0.0070 2.0348
Detritivores 7 6.4091 —315.9443
Herbivores 8 0.0995 0.8902 —62.6458
Carnivores 9 6.8257 17.2972

1 All entries are in units of yr'.

@ all eigenvalues of M are negative — stable!



Motivation

o (late time behaviour) Largest eigenvalue of M: —0.002 yr—1



Motivation
o (late time behaviour) Largest eigenvalue of M: —0.002 yr—1

o (early time behaviour)(maximal) reactivity max R = 65.4 yr—!
Yo



Motivation

o (late time behaviour) Largest eigenvalue of M: —0.002 yr—1

o (early time behaviour)(maximal) reactivity max R = 65.4 yr—!
Yo

e very different timescales!



Motivation

o (late time behaviour) Largest eigenvalue of M: —0.002 yr—1

o (early time behaviour)(maximal) reactivity max R = 65.4 yr—!
Yo

e very different timescales!
ly(t)[?

Plot of max Tl in log-plot:
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a giant amplification



May-Wigner model

@ (Lord May 1973) Consider a model:

dyl Z Myyj,

o M will be of size N x N:
M= —ply+ X

where 1 > 0 (what is it?) and X is random drawn from:

P(X)[dX] ~ exp (—ZﬁlzTrXTX) [dX],
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May-Wigner model
@ Late time behaviour — eigenvalues of M. Asymptotic (N — o0)

density:

1
pu(x:y) = —50 (0% = (x + p)* = y?),

or the circular law (only translated)

e Vary u (or vary o)
@ System is stable if u < us and unstable when p > ps for us = o

Phase space is one-dimensional:

)

K stable

Wd Ajisusp

unstable
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Beyond May-Wigner model

@ How to include transients? Find a proper observable.
o Treating randomness by averaging over X: O = [[dX]P(X)O(X).
@ Treating initial conditions:
© averaged over Oay = (O(y0)),, = [[dyo]sPo(¥0) O(¥0)
@ maximized Omax = n}gx 0,
@ Measuring transient behaviour — study the sign of reactivity R...
@ ...or Rmax — the X-averaged worst case scenario.
e We compute it easily:

Rmax = max <y0| MT + M |y0>

¥o (volyo) = Amax <MT " M> '

@ In the asymptotic N — oo limit:

lim (Rmax)x = —2p+2uT, pr =20
N—o00

which is found by using the Wigner's semicirlce law for the eigenvalues
of MT + M.
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@ A new window opens in the phase space of the model:
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Beyond May-Wigner model

@ stable transient if Rnax > 0 and stable non-transient Rpax < 0

@ A new window opens in the phase space of the model:

p=0.50 H=Hs H=Hr p=20
1 0] @] © |0
< 2
g‘o (1)
% : ll ) : ll ) : ll ) : 1:"“
- W5 stable  br stable T

unstable . ; .
transient non-transient

o Voila, new regimel
@ But... We see that R,, = —2u < 0. What is then its nature?
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More on stable transient regime

@ Inspect the distribution of reactivity
g(r) = 6(r — R(yo))

o Compute two variants
o g(r) = <g(r)>X,y0
Q Zoux(r) = <ma><g(f)>
Yo X
@ In one case yp is particular, in the other it is typical
@ Averaged variant is found by completing the square
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More on stable transient regime

@ Inspect the distribution of reactivity
g(r) = 6(r — R(yo))

o Compute two variants
o g(") = <g(r)>X,y0
9 gmax(r) = <man(r)>
Yo X
@ In one case yp is particular, in the other it is typical

@ Averaged variant is found by completing the square

1 _ (r+2p)?

Ba(r) = —e %% . ok =40%/N
\/2moR

@ The extreme variant is the GOE Tracy-Widom distribution

g0 = 5 (220 2en8703)), = s (2

+I’
Ty

)



@ The abundance of transient trajectories:

Nmax = / gmax(r)dr7 N,y = / @(r)dr.
0 0

m(ﬂ) =1- FN,ﬁ:l <\/(§M> ,Nav(ﬂ) = %erfc (\/N/Z_) .




@ The abundance of transient trajectories:

Nmax:/ gmax(r)dr7 Nav:/ g(r)dr'
0 0

Noac(12) = 1~ Fvss (“f“) i) = jerte (VAL ).

oo p
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@ The abundance of transient trajectories:

Nmax = / gmax(r)dr7 N,y = / @(r)dr.
0 0

Ninax(pt) =1 — Fn g1 <\/§M> , Nay(p) = %erfc (\/NM> )

T o mm====mmmm—mmmmm =

Hr V]

S
unstable stable stable
transient non-transient

e transient trajectories are (potentially) present in the whole
transient regime 1 € (us, u7) as shown by the behaviour of Ny,
they are otherwise uncommon as dictated by-N,:
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Transient behaviour generators

e What determines transient behaviour? (extended) May-Wigner model
does hint at its source.
@ To understand, consider Schur decomposition:

X=0(Z+T)oT,

where T is block-upper triangular (eigenvectors), Z block-diagonal
(eigenvalues) and O orthogonal.

@ Go back to reactivity R and compute the X average as decomposed
into two parts

WRix=—2nt ()/OT)/0> (<y0’ <ZT " Z>X |y°> -

Fl(TT+7), o) )

@ In May-Wigner model, both terms vanish.
@ Introduce a modification of the model — fix T and leave the Z
unchanged so that only one vanishes.
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Transient behaviour generators

Propose a fixed Tg model:

P(X; To)ldX] ~ 6(T — To) P(X)[dX],

@ Seems artificial but has two properties:

@ Does not spoil stability (eigenvalues stay in place)
@ Does modify reactivity (transient regime!)

To resembles an external field:

T + T
(Rlp=—2u+1, 1= ol To” + Tolyo)

{yolyo)

@ ...or a (not so distant) echo of eigenvectors



Transient behaviour generators

@ Phase space is now two-dimensional with proper transient regime:

t/0 = 1y(t)|? (b)
4
3.
2 1 <
,ICI.)l
1' IE'E
B
a t
0,’ g:‘ﬁ(a)-
normal X

1 2 3 p/o
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Recap:

@ Transient behaviour is an early time phenomenon abundant in real-life
systems

@ May-Wigner model contains a regime of parameters where transient
dynamics is present although rare

@ Transient trajectories are generated by eigenvector degrees of freedom
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Recap:
@ Transient behaviour is an early time phenomenon abundant in real-life
systems

@ May-Wigner model contains a regime of parameters where transient
dynamics is present although rare

@ Transient trajectories are generated by eigenvector degrees of freedom
Future:

@ Reactivity is not an exact measure of transient behaviour

@ What about tmay? or amplification?

o Statistics of the norm |y(t)|? (variance and beyond)

o Echoes of transient behaviour in the chaotic phase



