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Motivation

Choose a dynamical complex system
Description: dxi

dt = fi (x1...xN), i = 1...N
Examples

1 Lotka-Volterra fi = xi (1−
∑

j αijxj)

2 deep learning fi = tanh
(∑

j Cijxj

)

Rich dynamics – fixed points, limit cycles and strange attractors
Simplest case – stability analysis xi = x∗i + yi for fi (x∗) = 0
Linear equation for deviations:

dyi

dt
=

N∑
j=1

Mijyj , Mij = ∂xj fi (x)|x=x∗

Inspect eigenvalues of M

t

x(t)

late timeintermediate time
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Motivation

Eigenvalues of M – late time analysis

What about intermediate or early times? Hard in general...
A tangible feature – transient (growth) behaviour

stable transient

unstablestable non-transient

|y(t)|2

t

where |y(t)|2 =
∑

i y
2
i is the norm.

Two indicators amplification and reactivity:

A = max
t≥0

|y(t)|2

|y0|2
, R =

1
|y0|2

lim
t→0

d |y(t)|2

dt
,

where y0 is the initial condition.
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Motivation

For a linear model the solution (bra-ket notation):

|y(t)〉 = eMt |y0〉 ,

The norm is

〈y(t)|y(t)〉 = 〈y0| eMT teMt |y0〉

and so the reactivity

R =

〈
y0|(MT +M)|y0

〉
〈y0|y0〉

,

we have A = max
t≥0

(
1+ Rt +O(t2)

)
.
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Motivation

When does it show up? M must be asymmetric. Not concrete
enough!

Does it matter? It does, at least for fluids, brains and ecosystems
Neubert & Caswell 1997 – rainforest compartment model
Consider the following mass–energy flow diagram:
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The model is of the same form:

dyi

dt
=

9∑
j=1

Mijyj ,

the matrix M:

all eigenvalues of M are negative – stable!
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Motivation

(late time behaviour) Largest eigenvalue of M: −0.002 yr−1

(early time behaviour)(maximal) reactivity max
y0

R = 65.4 yr−1

very different timescales!

Plot of max
y0

|y(t)|2
|y0|2 in log-plot:

a giant amplification
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May-Wigner model

(Lord May 1973) Consider a model:

dyi

dt
=

N∑
j=1

Mijyj ,

M will be of size N × N:

M = −µ1N + X

where µ > 0 (what is it?) and X is random drawn from:

P(X )[dX ] ∼ exp

(
− N
2σ2TrX

TX
)
[dX ],



May-Wigner model

Late time behaviour – eigenvalues of M. Asymptotic (N →∞)
density:

ρM(x , y) =
1
πσ2 θ

(
σ2 − (x + µ)2 − y2) ,

or the circular law (only translated)

Vary µ (or vary σ)
System is stable if µ < µs and unstable when µ > µs for µs = σ.
Phase space is one-dimensional:

- 3 - 2 - 1 0 1

- 1

0

1

- 3 - 2 - 1 0 1

- 1

0

1

μS

density ρ
M

unstable stable
μ
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Beyond May-Wigner model

How to include transients? Find a proper observable.

Treating randomness by averaging over X : O =
∫
[dX ]P(X )O(X ).

Treating initial conditions:
1 averaged over Oav = 〈O(y0)〉y0

=
∫
[dy0]βp0(y0)O(y0)

2 maximized Omax = max
y0

O,

Measuring transient behaviour – study the sign of reactivity R ...
...or Rmax – the X -averaged worst case scenario.
We compute it easily:

Rmax = max
y0

〈
y0|(MT +M)|y0

〉
〈y0|y0〉

= λmax

(
MT +M

)
.

In the asymptotic N →∞ limit:

lim
N→∞

〈Rmax〉X = −2µ+ 2µT , µT =
√
2σ

which is found by using the Wigner’s semicirlce law for the eigenvalues
of MT +M.
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Beyond May-Wigner model

stable transient if Rmax > 0 and stable non-transient Rmax < 0

A new window opens in the phase space of the model:

- 3 - 2 - 1 0 1

- 1

0
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- 3 - 2 - 1 0 1

- 1

0

1

- 3 - 2 - 1 0 1

- 1

0
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- 1
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- 6 - 4 - 2 0 2

0.2

- 6 - 4 - 2 0 2

0.2

transient

- 6 - 4 - 2 0 2

0.2

μS μT stable
non-transient

stable
transient

unstable
μ

μ=2σμ=μTμ=μSμ=0.5σ

stable

density ρ
M

density ρ
M

†+M

Voilà, new regime!
But... We see that Rav = −2µ < 0. What is then its nature?
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More on stable transient regime

Inspect the distribution of reactivity

g(r) = δ(r − R(y0))

.

Compute two variants
1 gav(r) = 〈g(r)〉X ,y0

2 gmax(r) =
〈
max
y0

g(r)
〉

X
In one case y0 is particular, in the other it is typical
Averaged variant is found by completing the square

gav(r) =
1√
2πσ2

R

e
− (r+2µ)2

2σ2
R , σ2

R = 4σ2/N

The extreme variant is the GOE Tracy-Widom distribution

gmax(r) =
〈
δ
(
r + 2µ− λmax(XT + X )

)〉
X
=

d
dr

FN,β=1

(√
N
σ

(
µ+

r
2

))



More on stable transient regime

Inspect the distribution of reactivity

g(r) = δ(r − R(y0))

.
Compute two variants

1 gav(r) = 〈g(r)〉X ,y0

2 gmax(r) =
〈
max
y0

g(r)
〉

X

In one case y0 is particular, in the other it is typical
Averaged variant is found by completing the square

gav(r) =
1√
2πσ2

R

e
− (r+2µ)2

2σ2
R , σ2

R = 4σ2/N

The extreme variant is the GOE Tracy-Widom distribution

gmax(r) =
〈
δ
(
r + 2µ− λmax(XT + X )

)〉
X
=

d
dr

FN,β=1

(√
N
σ

(
µ+

r
2

))



More on stable transient regime

Inspect the distribution of reactivity

g(r) = δ(r − R(y0))

.
Compute two variants

1 gav(r) = 〈g(r)〉X ,y0

2 gmax(r) =
〈
max
y0

g(r)
〉

X
In one case y0 is particular, in the other it is typical

Averaged variant is found by completing the square

gav(r) =
1√
2πσ2

R

e
− (r+2µ)2

2σ2
R , σ2

R = 4σ2/N

The extreme variant is the GOE Tracy-Widom distribution

gmax(r) =
〈
δ
(
r + 2µ− λmax(XT + X )

)〉
X
=

d
dr

FN,β=1

(√
N
σ

(
µ+

r
2

))



More on stable transient regime

Inspect the distribution of reactivity

g(r) = δ(r − R(y0))

.
Compute two variants

1 gav(r) = 〈g(r)〉X ,y0

2 gmax(r) =
〈
max
y0

g(r)
〉

X
In one case y0 is particular, in the other it is typical
Averaged variant is found by completing the square

gav(r) =
1√
2πσ2

R

e
− (r+2µ)2

2σ2
R , σ2

R = 4σ2/N

The extreme variant is the GOE Tracy-Widom distribution

gmax(r) =
〈
δ
(
r + 2µ− λmax(XT + X )

)〉
X
=

d
dr

FN,β=1

(√
N
σ

(
µ+

r
2

))



More on stable transient regime

Inspect the distribution of reactivity

g(r) = δ(r − R(y0))

.
Compute two variants

1 gav(r) = 〈g(r)〉X ,y0

2 gmax(r) =
〈
max
y0

g(r)
〉

X
In one case y0 is particular, in the other it is typical
Averaged variant is found by completing the square

gav(r) =
1√
2πσ2

R

e
− (r+2µ)2

2σ2
R , σ2

R = 4σ2/N

The extreme variant is the GOE Tracy-Widom distribution

gmax(r) =
〈
δ
(
r + 2µ− λmax(XT + X )

)〉
X
=

d
dr

FN,β=1

(√
N
σ

(
µ+

r
2

))



The abundance of transient trajectories:

Nmax =

∫ ∞
0

gmax(r)dr , Nav =

∫ ∞
0

gav(r)dr .

Nmax(µ) = 1− FN,β=1

(√
Nµ
σ

)
,Nav(µ) =

1
2
erfc

(√
N
µ

µT

)
.

Nmax

Nav

μS μT μ

1

stable
non-transient

stable
transient

unstable

transient trajectories are (potentially) present in the whole
transient regime µ ∈ (µS , µT ) as shown by the behaviour of Nmax,
they are otherwise uncommon as dictated by Nav.
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Transient behaviour generators

What determines transient behaviour? (extended) May-Wigner model
does hint at its source.

To understand, consider Schur decomposition:

X = O(Z + T )OT ,

where T is block-upper triangular (eigenvectors), Z block-diagonal
(eigenvalues) and O orthogonal.
Go back to reactivity R and compute the X average as decomposed
into two parts

〈R〉X = −2µ+
1

〈y0|y0〉

(〈
y0|
〈
ZT + Z

〉
X
|y0

〉
+

+
〈
y0|
〈
TT + T

〉
X
|y0

〉)
In May-Wigner model, both terms vanish.
Introduce a modification of the model – fix T and leave the Z
unchanged so that only one vanishes.



Transient behaviour generators

What determines transient behaviour? (extended) May-Wigner model
does hint at its source.
To understand, consider Schur decomposition:

X = O(Z + T )OT ,

where T is block-upper triangular (eigenvectors), Z block-diagonal
(eigenvalues) and O orthogonal.

Go back to reactivity R and compute the X average as decomposed
into two parts

〈R〉X = −2µ+
1

〈y0|y0〉

(〈
y0|
〈
ZT + Z

〉
X
|y0

〉
+

+
〈
y0|
〈
TT + T

〉
X
|y0

〉)
In May-Wigner model, both terms vanish.
Introduce a modification of the model – fix T and leave the Z
unchanged so that only one vanishes.



Transient behaviour generators

What determines transient behaviour? (extended) May-Wigner model
does hint at its source.
To understand, consider Schur decomposition:

X = O(Z + T )OT ,

where T is block-upper triangular (eigenvectors), Z block-diagonal
(eigenvalues) and O orthogonal.
Go back to reactivity R and compute the X average as decomposed
into two parts

〈R〉X = −2µ+
1

〈y0|y0〉

(〈
y0|
〈
ZT + Z

〉
X
|y0

〉
+

+
〈
y0|
〈
TT + T

〉
X
|y0

〉)

In May-Wigner model, both terms vanish.
Introduce a modification of the model – fix T and leave the Z
unchanged so that only one vanishes.



Transient behaviour generators

What determines transient behaviour? (extended) May-Wigner model
does hint at its source.
To understand, consider Schur decomposition:

X = O(Z + T )OT ,

where T is block-upper triangular (eigenvectors), Z block-diagonal
(eigenvalues) and O orthogonal.
Go back to reactivity R and compute the X average as decomposed
into two parts

〈R〉X = −2µ+
1

〈y0|y0〉

(〈
y0|
〈
ZT + Z

〉
X
|y0

〉
+

+
〈
y0|
〈
TT + T

〉
X
|y0

〉)
In May-Wigner model, both terms vanish.

Introduce a modification of the model – fix T and leave the Z
unchanged so that only one vanishes.



Transient behaviour generators

What determines transient behaviour? (extended) May-Wigner model
does hint at its source.
To understand, consider Schur decomposition:

X = O(Z + T )OT ,

where T is block-upper triangular (eigenvectors), Z block-diagonal
(eigenvalues) and O orthogonal.
Go back to reactivity R and compute the X average as decomposed
into two parts

〈R〉X = −2µ+
1

〈y0|y0〉

(〈
y0|
〈
ZT + Z

〉
X
|y0

〉
+

+
〈
y0|
〈
TT + T

〉
X
|y0

〉)
In May-Wigner model, both terms vanish.
Introduce a modification of the model – fix T and leave the Z
unchanged so that only one vanishes.



Transient behaviour generators

Propose a fixed T0 model:

P̃(X ;T0)[dX ] ∼ δ(T − T0)P(X )[dX ],

Seems artificial but has two properties:
1 Does not spoil stability (eigenvalues stay in place)
2 Does modify reactivity (transient regime!)

T0 resembles an external field:

〈R〉P̃ = −2µ+ τ, τ =

〈
y0|TT

0 + T0|y0
〉

〈y0|y0〉
,

...or a (not so distant) echo of eigenvectors
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Transient behaviour generators

Phase space is now two-dimensional with proper transient regime:
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Recap and Future

Recap:
Transient behaviour is an early time phenomenon abundant in real-life
systems
May-Wigner model contains a regime of parameters where transient
dynamics is present although rare
Transient trajectories are generated by eigenvector degrees of freedom

Future:
Reactivity is not an exact measure of transient behaviour
What about tmax? or amplification?
Statistics of the norm |y(t)|2 (variance and beyond)
Echoes of transient behaviour in the chaotic phase
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