What drives transient behaviour in complex systems?

Jacek Grela
Queen Mary University of London

October 4, 2018

Random Matrices, Integrability and Complex Systems
Yad Hashmona
based on Phys. Rev. E 96, 022316

Outline

- Motivation(s)
- May-Wigner and beyond
- Generators of transient behaviour

Motivation

- Choose a dynamical complex system Description: $\frac{d x_{i}}{d t}=f_{i}\left(x_{1} \ldots x_{N}\right), \quad i=1 \ldots N$ Examples
(1) Lotka-Volterra $f_{i}=x_{i}\left(1-\sum_{j} \alpha_{i j} x_{j}\right)$
(2) deep learning $f_{i}=\tanh \left(\sum_{j} C_{i j} x_{j}\right)$

Motivation

- Choose a dynamical complex system Description: $\frac{d x_{i}}{d t}=f_{i}\left(x_{1} \ldots x_{N}\right), \quad i=1 \ldots N$ Examples
(1) Lotka-Volterra $f_{i}=x_{i}\left(1-\sum_{j} \alpha_{i j} x_{j}\right)$
(2) deep learning $f_{i}=\tanh \left(\sum_{j} C_{i j} x_{j}\right)$
- Rich dynamics - fixed points, limit cycles and strange attractors

Motivation

- Choose a dynamical complex system Description: $\frac{d x_{i}}{d t}=f_{i}\left(x_{1} \ldots x_{N}\right), \quad i=1 \ldots N$ Examples
(1) Lotka-Volterra $f_{i}=x_{i}\left(1-\sum_{j} \alpha_{i j} x_{j}\right)$
(2) deep learning $f_{i}=\tanh \left(\sum_{j} C_{i j} x_{j}\right)$
- Rich dynamics - fixed points, limit cycles and strange attractors
- Simplest case - stability analysis $x_{i}=x_{i}^{*}+y_{i}$ for $f_{i}\left(x^{*}\right)=0$

Motivation

- Choose a dynamical complex system

Description: $\frac{d x_{i}}{d t}=f_{i}\left(x_{1} \ldots x_{N}\right), \quad i=1 \ldots N$ Examples
(1) Lotka-Volterra $f_{i}=x_{i}\left(1-\sum_{j} \alpha_{i j} x_{j}\right)$
(2) deep learning $f_{i}=\tanh \left(\sum_{j} C_{i j} x_{j}\right)$

- Rich dynamics - fixed points, limit cycles and strange attractors
- Simplest case - stability analysis $x_{i}=x_{i}^{*}+y_{i}$ for $f_{i}\left(x^{*}\right)=0$ Linear equation for deviations:

$$
\frac{d y_{i}}{d t}=\sum_{j=1}^{N} M_{i j} y_{j}, \quad M_{i j}=\partial_{x_{j}} f_{i}(x)_{\mid x=x^{*}}
$$

Motivation

- Choose a dynamical complex system Description: $\frac{d x_{i}}{d t}=f_{i}\left(x_{1} \ldots x_{N}\right), \quad i=1 \ldots N$ Examples
(1) Lotka-Volterra $f_{i}=x_{i}\left(1-\sum_{j} \alpha_{i j} x_{j}\right)$
(2) deep learning $f_{i}=\tanh \left(\sum_{j} C_{i j} x_{j}\right)$
- Rich dynamics - fixed points, limit cycles and strange attractors
- Simplest case - stability analysis $x_{i}=x_{i}^{*}+y_{i}$ for $f_{i}\left(x^{*}\right)=0$ Linear equation for deviations:

$$
\frac{d y_{i}}{d t}=\sum_{j=1}^{N} M_{i j} y_{j}, \quad M_{i j}=\partial_{x_{j}} f_{i}(x)_{\mid x=x^{*}}
$$

- Inspect eigenvalues of M

Motivation

- Choose a dynamical complex system

Description: $\frac{d x_{i}}{d t}=f_{i}\left(x_{1} \ldots x_{N}\right), \quad i=1 \ldots N$ Examples
(1) Lotka-Volterra $f_{i}=x_{i}\left(1-\sum_{j} \alpha_{i j} x_{j}\right)$
(2) deep learning $f_{i}=\tanh \left(\sum_{j} C_{i j} x_{j}\right)$

- Rich dynamics - fixed points, limit cycles and strange attractors
- Simplest case - stability analysis $x_{i}=x_{i}^{*}+y_{i}$ for $f_{i}\left(x^{*}\right)=0$ Linear equation for deviations:

$$
\frac{d y_{i}}{d t}=\sum_{j=1}^{N} M_{i j} y_{j}, \quad M_{i j}=\partial_{x_{j}} f_{i}(x)_{\mid x=x^{*}}
$$

- Inspect eigenvalues of M

Motivation

- Eigenvalues of M - late time analysis

Motivation

- Eigenvalues of M - late time analysis
- What about intermediate or early times? Hard in general...

Motivation

- Eigenvalues of M - late time analysis
- What about intermediate or early times? Hard in general...
- A tangible feature - transient (growth) behaviour

where $|y(t)|^{2}=\sum_{i} y_{i}^{2}$ is the norm.

Motivation

- Eigenvalues of M - late time analysis
- What about intermediate or early times? Hard in general...
- A tangible feature - transient (growth) behaviour

where $|y(t)|^{2}=\sum_{i} y_{i}^{2}$ is the norm.
- Two indicators amplification and reactivity:

$$
A=\max _{t \geq 0} \frac{|y(t)|^{2}}{\left|y_{0}\right|^{2}}, \quad R=\frac{1}{\left|y_{0}\right|^{2}} \lim _{t \rightarrow 0} \frac{d|y(t)|^{2}}{d t}
$$

where y_{0} is the initial condition.

Motivation

- For a linear model the solution (bra-ket notation):

$$
|y(t)\rangle=e^{M t}\left|y_{0}\right\rangle,
$$

Motivation

- For a linear model the solution (bra-ket notation):

$$
|y(t)\rangle=e^{M t}\left|y_{0}\right\rangle,
$$

- The norm is

$$
\langle y(t) \mid y(t)\rangle=\left\langle y_{0}\right| e^{M^{T} t} e^{M t}\left|y_{0}\right\rangle
$$

Motivation

- For a linear model the solution (bra-ket notation):

$$
|y(t)\rangle=e^{M t}\left|y_{0}\right\rangle,
$$

- The norm is

$$
\langle y(t) \mid y(t)\rangle=\left\langle y_{0}\right| e^{M^{\top} t} e^{M t}\left|y_{0}\right\rangle
$$

- and so the reactivity

$$
R=\frac{\left\langle y_{0}\right|\left(M^{T}+M\right)\left|y_{0}\right\rangle}{\left\langle y_{0} \mid y_{0}\right\rangle}
$$

Motivation

- For a linear model the solution (bra-ket notation):

$$
|y(t)\rangle=e^{M t}\left|y_{0}\right\rangle,
$$

- The norm is

$$
\langle y(t) \mid y(t)\rangle=\left\langle y_{0}\right| e^{M^{\top} t} e^{M t}\left|y_{0}\right\rangle
$$

- and so the reactivity

$$
R=\frac{\left\langle y_{0}\right|\left(M^{T}+M\right)\left|y_{0}\right\rangle}{\left\langle y_{0} \mid y_{0}\right\rangle}
$$

- we have $A=\max _{t \geq 0}\left(1+R t+\mathcal{O}\left(t^{2}\right)\right)$.

Motivation

- When does it show up? M must be asymmetric. Not concrete enough!

Motivation

- When does it show up? M must be asymmetric. Not concrete enough!
- Does it matter? It does, at least for fluids, brains and ecosystems

Motivation

- When does it show up? M must be asymmetric. Not concrete enough!
- Does it matter? It does, at least for fluids, brains and ecosystems
- Neubert \& Caswell 1997 - rainforest compartment model

Motivation

- When does it show up? M must be asymmetric. Not concrete enough!
- Does it matter? It does, at least for fluids, brains and ecosystems
- Neubert \& Caswell 1997 - rainforest compartment model
- Consider the following mass-energy flow diagram:

Motivation

- The model is of the same form:

$$
\frac{d y_{i}}{d t}=\sum_{j=1}^{9} M_{i j} y_{j}
$$

Motivation

- The model is of the same form:

$$
\frac{d y_{i}}{d t}=\sum_{j=1}^{9} M_{i j} y_{j}
$$

- the matrix M :

Table 2. Transfer matrix for elemental dynamics in a Panamanian tropical forest (cf. McGinnis et al. 1969).

Compartmen and number		1	2	3	4	5	6	7	8	9
Leaves	1	$-1.5622 \dagger$	0.6685							
Stems	2		-0.7119			2.5632				
Litter	3	1.4627	0.0364	-6.4091			1.1446		55.8201	17.2972
Soil	4				-0.0222			315.9443		
Roots	5				0.0201	-2.5632				
Fruits and flowers	6		0.0070				-2.0348			
Detritivores	7			6.4091				-315.9443		
Herbivores	8	0.0995					0.8902		-62.6458	
Carnivores	9								6.8257	-17.2972

[^0]
Motivation

- The model is of the same form:

$$
\frac{d y_{i}}{d t}=\sum_{j=1}^{9} M_{i j} y_{j}
$$

- the matrix M :

Table 2. Transfer matrix for elemental dynamics in a Panamanian tropical forest (cf. McGinnis et al. 1969).

Compartme and numbe		1	2	3	4	5	6	7	8	9
Leaves	1	$-1.5622 \dagger$	0.6685							
Stems	2		-0.7119			2.5632				
Litter	3	1.4627	0.0364	-6.4091			1.1446		55.8201	17.2972
Soil	4				-0.0222			315.9443		
Roots	5				0.0201	-2.5632				
Fruits and flowers	6		0.0070				-2.0348			
Detritivores	7			6.4091				-315.9443		
Herbivores	8	0.0995					0.8902		-62.6458	
Carnivores	9								6.8257	-17.2972

\dagger All entries are in units of yr^{-1}.

- all eigenvalues of M are negative - stable!

Motivation

- (late time behaviour) Largest eigenvalue of M : $-0.002 \mathrm{yr}^{-1}$

Motivation

- (late time behaviour) Largest eigenvalue of M : $-0.002 \mathrm{yr}^{-1}$
- (early time behaviour)(maximal) reactivity $\max R=65.4 \mathrm{yr}^{-1}$ yo

Motivation

- (late time behaviour) Largest eigenvalue of M : $-0.002 \mathrm{yr}^{-1}$
- (early time behaviour)(maximal) reactivity $\max R=65.4 \mathrm{yr}^{-1}$
- very different timescales!

Motivation

- (late time behaviour) Largest eigenvalue of M : $-0.002 \mathrm{yr}^{-1}$
- (early time behaviour)(maximal) reactivity $\max R=65.4 \mathrm{yr}^{-1}$
- very different timescales!

Plot of $\max _{y_{0}} \frac{|y(t)|^{2}}{\left|y_{0}\right|^{2}}$ in log-plot:

a giant amplification

May-Wigner model

- (Lord May 1973) Consider a model:

$$
\frac{d y_{i}}{d t}=\sum_{j=1}^{N} M_{i j} y_{j}
$$

- M will be of size $N \times N$:

$$
M=-\mu 1_{N}+X
$$

where $\mu>0$ (what is it?) and X is random drawn from:

$$
P(X)[d X] \sim \exp \left(-\frac{N}{2 \sigma^{2}} \operatorname{Tr} X^{T} X\right)[d X]
$$

May-Wigner model

- Late time behaviour - eigenvalues of M. Asymptotic $(N \rightarrow \infty)$ density:

$$
\rho_{M}(x, y)=\frac{1}{\pi \sigma^{2}} \theta\left(\sigma^{2}-(x+\mu)^{2}-y^{2}\right),
$$

or the circular law (only translated)

May-Wigner model

- Late time behaviour - eigenvalues of M. Asymptotic $(N \rightarrow \infty)$ density:

$$
\rho_{M}(x, y)=\frac{1}{\pi \sigma^{2}} \theta\left(\sigma^{2}-(x+\mu)^{2}-y^{2}\right),
$$

or the circular law (only translated)

- Vary μ (or vary σ)

May-Wigner model

- Late time behaviour - eigenvalues of M. Asymptotic $(N \rightarrow \infty)$ density:

$$
\rho_{M}(x, y)=\frac{1}{\pi \sigma^{2}} \theta\left(\sigma^{2}-(x+\mu)^{2}-y^{2}\right),
$$

or the circular law (only translated)

- Vary μ (or vary σ)
- System is stable if $\mu<\mu_{s}$ and unstable when $\mu>\mu_{s}$ for $\mu_{s}=\sigma$. Phase space is one-dimensional:

Beyond May-Wigner model

- How to include transients? Find a proper observable.

Beyond May-Wigner model

- How to include transients? Find a proper observable.
- Treating randomness by averaging over $X: \bar{O}=\int[d X] P(X) O(X)$.

Beyond May-Wigner model

- How to include transients? Find a proper observable.
- Treating randomness by averaging over $X: \bar{O}=\int[d X] P(X) O(X)$.
- Treating initial conditions:
(1) averaged over $O_{\mathrm{av}}=\left\langle O\left(y_{0}\right)\right\rangle_{y_{0}}=\int\left[d y_{0}\right]_{\beta} p_{0}\left(y_{0}\right) O\left(y_{0}\right)$
(2) maximized $O_{\max }=\max _{y_{0}} O$,

Beyond May-Wigner model

- How to include transients? Find a proper observable.
- Treating randomness by averaging over $X: \bar{O}=\int[d X] P(X) O(X)$.
- Treating initial conditions:
(1) averaged over $O_{\mathrm{av}}=\left\langle O\left(y_{0}\right)\right\rangle_{y_{0}}=\int\left[d y_{0}\right]_{\beta} p_{0}\left(y_{0}\right) O\left(y_{0}\right)$
(2) maximized $O_{\text {max }}=\max _{y_{0}} O$,
- Measuring transient behaviour - study the sign of reactivity $R \ldots$

Beyond May-Wigner model

- How to include transients? Find a proper observable.
- Treating randomness by averaging over $X: \bar{O}=\int[d X] P(X) O(X)$.
- Treating initial conditions:
(1) averaged over $O_{\mathrm{av}}=\left\langle O\left(y_{0}\right)\right\rangle_{y_{0}}=\int\left[d y_{0}\right]_{\beta} p_{0}\left(y_{0}\right) O\left(y_{0}\right)$
(2) maximized $O_{\text {max }}=\max _{y_{0}} O$,
- Measuring transient behaviour - study the sign of reactivity $R \ldots$
- ...or $\overline{R_{\max }}$ - the X-averaged worst case scenario.

Beyond May-Wigner model

- How to include transients? Find a proper observable.
- Treating randomness by averaging over $X: \bar{O}=\int[d X] P(X) O(X)$.
- Treating initial conditions:
(1) averaged over $O_{\mathrm{av}}=\left\langle O\left(y_{0}\right)\right\rangle_{y_{0}}=\int\left[d y_{0}\right]_{\beta} p_{0}\left(y_{0}\right) O\left(y_{0}\right)$
(2) maximized $O_{\text {max }}=\max _{y_{0}} O$,
- Measuring transient behaviour - study the sign of reactivity $R \ldots$
- ...or $\overline{R_{\max }}$ - the X-averaged worst case scenario.
- We compute it easily:

$$
R_{\max }=\max _{y_{0}} \frac{\left\langle y_{0}\right|\left(M^{T}+M\right)\left|y_{0}\right\rangle}{\left\langle y_{0} \mid y_{0}\right\rangle}=\lambda_{\max }\left(M^{T}+M\right) .
$$

Beyond May-Wigner model

- How to include transients? Find a proper observable.
- Treating randomness by averaging over $X: \bar{O}=\int[d X] P(X) O(X)$.
- Treating initial conditions:
(1) averaged over $O_{\mathrm{av}}=\left\langle O\left(y_{0}\right)\right\rangle_{y_{0}}=\int\left[d y_{0}\right]_{\beta} p_{0}\left(y_{0}\right) O\left(y_{0}\right)$
(2) maximized $O_{\max }=\max _{y_{0}} O$,
- Measuring transient behaviour - study the sign of reactivity $R \ldots$
- ...or $\overline{R_{\max }}$ - the X-averaged worst case scenario.
- We compute it easily:

$$
R_{\max }=\max _{y_{0}} \frac{\left\langle y_{0}\right|\left(M^{T}+M\right)\left|y_{0}\right\rangle}{\left\langle y_{0} \mid y_{0}\right\rangle}=\lambda_{\max }\left(M^{T}+M\right) .
$$

- In the asymptotic $N \rightarrow \infty$ limit:

$$
\lim _{N \rightarrow \infty}\left\langle R_{\max }\right\rangle_{X}=-2 \mu+2 \mu_{T}, \quad \mu_{T}=\sqrt{2} \sigma
$$

which is found by using the Wigner's semicirlce law for the eigenvalues of $M^{T}+M$.

Beyond May-Wigner model

- stable transient if $\overline{R_{\max }}>0$ and stable non-transient $\overline{R_{\max }}<0$

Beyond May-Wigner model

- stable transient if $\overline{R_{\max }}>0$ and stable non-transient $\overline{R_{\max }}<0$
- A new window opens in the phase space of the model:

Beyond May-Wigner model

- stable transient if $\overline{R_{\max }}>0$ and stable non-transient $\overline{R_{\max }}<0$
- A new window opens in the phase space of the model:

- Voilà, new regime!

Beyond May-Wigner model

- stable transient if $\overline{R_{\max }}>0$ and stable non-transient $\overline{R_{\max }}<0$
- A new window opens in the phase space of the model:

- Voilà, new regime!
- But... We see that $\overline{R_{\mathrm{av}}}=-2 \mu<0$. What is then its nature?

More on stable transient regime

- Inspect the distribution of reactivity

$$
g(r)=\delta\left(r-R\left(y_{0}\right)\right)
$$

More on stable transient regime

- Inspect the distribution of reactivity

$$
g(r)=\delta\left(r-R\left(y_{0}\right)\right)
$$

- Compute two variants
(1) $\overline{g_{\mathrm{av}}}(r)=\langle g(r)\rangle_{X, y_{0}}$
(2) $\overline{g_{\max }}(r)=\left\langle\max _{y_{0}} g(r)\right\rangle_{X}$

More on stable transient regime

- Inspect the distribution of reactivity

$$
g(r)=\delta\left(r-R\left(y_{0}\right)\right)
$$

- Compute two variants
(1) $\overline{g_{\mathrm{av}}}(r)=\langle g(r)\rangle_{X, y_{0}}$
(2) $\overline{g_{\max }}(r)=\left\langle\max _{y_{0}} g(r)\right\rangle_{x}$
- In one case y_{0} is particular, in the other it is typical

More on stable transient regime

- Inspect the distribution of reactivity

$$
g(r)=\delta\left(r-R\left(y_{0}\right)\right)
$$

- Compute two variants
(1) $\overline{g_{\mathrm{av}}}(r)=\langle g(r)\rangle_{X, y_{0}}$
(2) $\overline{g_{\max }}(r)=\left\langle\max _{y_{0}} g(r)\right\rangle_{x}$
- In one case y_{0} is particular, in the other it is typical
- Averaged variant is found by completing the square

$$
\overline{g_{\mathrm{av}}}(r)=\frac{1}{\sqrt{2 \pi \sigma_{R}^{2}}} e^{-\frac{(r+2 \mu)^{2}}{2 \sigma_{R}^{2}}}, \quad \sigma_{R}^{2}=4 \sigma^{2} / N
$$

More on stable transient regime

- Inspect the distribution of reactivity

$$
g(r)=\delta\left(r-R\left(y_{0}\right)\right)
$$

- Compute two variants
(1) $\overline{g_{\mathrm{av}}}(r)=\langle g(r)\rangle_{X, y_{0}}$
(2) $\overline{g_{\max }}(r)=\left\langle\max _{y_{0}} g(r)\right\rangle_{x}$
- In one case y_{0} is particular, in the other it is typical
- Averaged variant is found by completing the square

$$
\overline{g_{\mathrm{av}}}(r)=\frac{1}{\sqrt{2 \pi \sigma_{R}^{2}}} e^{-\frac{(r+2 \mu)^{2}}{2 \sigma_{R}^{2}}}, \quad \sigma_{R}^{2}=4 \sigma^{2} / N
$$

- The extreme variant is the GOE Tracy-Widom distribution

$$
\overline{g_{\max }}(r)=\left\langle\delta\left(r+2 \mu-\lambda_{\max }\left(X^{T}+X\right)\right)\right\rangle_{X}=\frac{d}{d r} F_{N, \beta=1}\left(\frac{\sqrt{N}}{\sigma}\left(\mu+\frac{r}{2}\right)\right.
$$

- The abundance of transient trajectories:

$$
\begin{gathered}
\overline{N_{\max }}=\int_{0}^{\infty} \overline{g_{\max }}(r) d r, \quad \overline{N_{\mathrm{av}}}=\int_{0}^{\infty} \overline{g_{\mathrm{av}}}(r) d r . \\
\overline{N_{\max }}(\mu)=1-F_{N, \beta=1}\left(\frac{\sqrt{N} \mu}{\sigma}\right), \overline{N_{\mathrm{av}}}(\mu)=\frac{1}{2} \operatorname{erfc}\left(\sqrt{N} \frac{\mu}{\mu_{T}}\right) .
\end{gathered}
$$

- The abundance of transient trajectories:

$$
\begin{gathered}
\overline{N_{\max }}=\int_{0}^{\infty} \overline{g_{\max }}(r) d r, \quad \overline{N_{\mathrm{av}}}=\int_{0}^{\infty} \overline{g_{\mathrm{av}}}(r) d r . \\
\overline{N_{\max }}(\mu)=1-F_{N, \beta=1}\left(\frac{\sqrt{N} \mu}{\sigma}\right), \overline{N_{\mathrm{av}}}(\mu)=\frac{1}{2} \operatorname{erfc}\left(\sqrt{N} \frac{\mu}{\mu_{T}}\right) .
\end{gathered}
$$

- The abundance of transient trajectories:

$$
\begin{aligned}
& \overline{N_{\max }}=\int_{0}^{\infty} \overline{g_{\max }}(r) d r, \quad \overline{N_{\mathrm{av}}}=\int_{0}^{\infty} \overline{g_{\mathrm{av}}}(r) d r . \\
& \overline{N_{\max }}(\mu)=1-F_{N, \beta=1}\left(\frac{\sqrt{N} \mu}{\sigma}\right), \overline{N_{\mathrm{av}}}(\mu)=\frac{1}{2} \operatorname{erfc}\left(\sqrt{N} \frac{\mu}{\mu_{T}}\right) .
\end{aligned}
$$

- transient trajectories are (potentially) present in the whole transient regime $\mu \in\left(\mu_{S}, \mu_{T}\right)$ as shown by the behaviour of $\overline{N_{\max }}$, they are otherwise uncommon as dictated by $\overline{N_{\mathrm{av}}}$.

Transient behaviour generators

- What determines transient behaviour? (extended) May-Wigner model does hint at its source.

Transient behaviour generators

- What determines transient behaviour? (extended) May-Wigner model does hint at its source.
- To understand, consider Schur decomposition:

$$
X=O(Z+T) O^{T}
$$

where T is block-upper triangular (eigenvectors), Z block-diagonal (eigenvalues) and O orthogonal.

Transient behaviour generators

- What determines transient behaviour? (extended) May-Wigner model does hint at its source.
- To understand, consider Schur decomposition:

$$
X=O(Z+T) O^{T}
$$

where T is block-upper triangular (eigenvectors), Z block-diagonal (eigenvalues) and O orthogonal.

- Go back to reactivity R and compute the X average as decomposed into two parts

$$
\begin{aligned}
\langle R\rangle_{X}=-2 \mu+\frac{1}{\left\langle y_{0} \mid y_{0}\right\rangle} & \left(\left\langle y_{0}\right|\left\langle z^{T}+z\right\rangle_{x}\left|y_{0}\right\rangle+\right. \\
& \left.+\left\langle y_{0}\right|\left\langle T^{T}+T\right\rangle_{x}\left|y_{0}\right\rangle\right)
\end{aligned}
$$

Transient behaviour generators

- What determines transient behaviour? (extended) May-Wigner model does hint at its source.
- To understand, consider Schur decomposition:

$$
X=O(Z+T) O^{T}
$$

where T is block-upper triangular (eigenvectors), Z block-diagonal (eigenvalues) and O orthogonal.

- Go back to reactivity R and compute the X average as decomposed into two parts

$$
\begin{aligned}
\langle R\rangle_{X}=-2 \mu+\frac{1}{\left\langle y_{0} \mid y_{0}\right\rangle} & \left(\left\langle y_{0}\right|\left\langle z^{T}+z\right\rangle_{x}\left|y_{0}\right\rangle+\right. \\
& \left.+\left\langle y_{0}\right|\left\langle T^{T}+T\right\rangle_{x}\left|y_{0}\right\rangle\right)
\end{aligned}
$$

- In May-Wigner model, both terms vanish.

Transient behaviour generators

- What determines transient behaviour? (extended) May-Wigner model does hint at its source.
- To understand, consider Schur decomposition:

$$
X=O(Z+T) O^{T}
$$

where T is block-upper triangular (eigenvectors), Z block-diagonal (eigenvalues) and O orthogonal.

- Go back to reactivity R and compute the X average as decomposed into two parts

$$
\begin{aligned}
\langle R\rangle_{X}=-2 \mu+\frac{1}{\left\langle y_{0} \mid y_{0}\right\rangle} & \left(\left\langle y_{0}\right|\left\langle z^{T}+z\right\rangle_{x}\left|y_{0}\right\rangle+\right. \\
& \left.+\left\langle y_{0}\right|\left\langle T^{T}+T\right\rangle_{x}\left|y_{0}\right\rangle\right)
\end{aligned}
$$

- In May-Wigner model, both terms vanish.
- Introduce a modification of the model - fix T and leave the Z unchanged so that only one vanishes.

Transient behaviour generators

- Propose a fixed T_{0} model:

$$
\tilde{P}\left(X ; T_{0}\right)[d X] \sim \delta\left(T-T_{0}\right) P(X)[d X],
$$

Transient behaviour generators

- Propose a fixed T_{0} model:

$$
\tilde{P}\left(X ; T_{0}\right)[d X] \sim \delta\left(T-T_{0}\right) P(X)[d X]
$$

- Seems artificial but has two properties:
(1) Does not spoil stability (eigenvalues stay in place)
(2) Does modify reactivity (transient regime!)

Transient behaviour generators

- Propose a fixed T_{0} model:

$$
\tilde{P}\left(X ; T_{0}\right)[d X] \sim \delta\left(T-T_{0}\right) P(X)[d X]
$$

- Seems artificial but has two properties:
(1) Does not spoil stability (eigenvalues stay in place)
(2) Does modify reactivity (transient regime!)
- T_{0} resembles an external field:

$$
\langle R\rangle_{\tilde{P}}=-2 \mu+\tau, \quad \tau=\frac{\left\langle y_{0}\right| T_{0}^{T}+T_{0}\left|y_{0}\right\rangle}{\left\langle y_{0} \mid y_{0}\right\rangle}
$$

Transient behaviour generators

- Propose a fixed T_{0} model:

$$
\tilde{P}\left(X ; T_{0}\right)[d X] \sim \delta\left(T-T_{0}\right) P(X)[d X]
$$

- Seems artificial but has two properties:
(1) Does not spoil stability (eigenvalues stay in place)
(2) Does modify reactivity (transient regime!)
- T_{0} resembles an external field:

$$
\langle R\rangle_{\tilde{P}}=-2 \mu+\tau, \quad \tau=\frac{\left\langle y_{0}\right| T_{0}^{T}+T_{0}\left|y_{0}\right\rangle}{\left\langle y_{0} \mid y_{0}\right\rangle}
$$

- ...or a (not so distant) echo of eigenvectors

Transient behaviour generators

- Phase space is now two-dimensional with proper transient regime:

Recap and Future

Recap:

- Transient behaviour is an early time phenomenon abundant in real-life systems
- May-Wigner model contains a regime of parameters where transient dynamics is present although rare
- Transient trajectories are generated by eigenvector degrees of freedom

Recap and Future

Recap:

- Transient behaviour is an early time phenomenon abundant in real-life systems
- May-Wigner model contains a regime of parameters where transient dynamics is present although rare
- Transient trajectories are generated by eigenvector degrees of freedom

Future:

- Reactivity is not an exact measure of transient behaviour
- What about $t_{\text {max }}$? or amplification?
- Statistics of the norm $|y(t)|^{2}$ (variance and beyond)
- Echoes of transient behaviour in the chaotic phase

[^0]: \dagger All entries are in units of yr^{-1}.

