Quantum chaos versus quantum complexity

Boris Gutkin

Holon Institute of Technology (HIT)

Yad Hashmona, October 2018

(ロ)、(型)、(E)、(E)、 E) の(の)

Outline of the talk

- Motivation: Chaos versus complexity.
- Integrable spin chains. Classical chaos.
- Integrable spin chains. Quantum chaos.

Duisburg collaborators: M. Akila, P. Braun, T. Guhr, D. Waltner

Classical Chaos

Integrable Hamiltonian systems. For 2N dimensional system, there are N integrals of motion \implies

Dynamics are "regular". No ergodicity, $\delta(t) \sim t$. Number of periodic orbits grows (at best) algebraically with t

Hyperbolic Hamiltonian systems. Exponential sensitivity to initial conditions: $\delta(t) \sim \delta(0)e^{\lambda t} \Longrightarrow$

Dynamics are "chaotic". Only energy is conserved, Ergodicity. Number of periodic orbits grows exponentially

Quantum spectrum

Quantum: $-\Delta \varphi_n = \lambda_n \varphi_n, \ \varphi_n|_{\partial \Omega} = 0 \qquad \varphi_n \in L^2(\Omega)$

Hamiltonian Systems \iff Unitary evolution $U(t) = e^{-\frac{i}{\hbar}Ht}$

Statistics of $\bar{\lambda}_n = \lambda_n / \Delta$ (Δ -mean level spacing):

$$\operatorname{Tr} U(t) = \sum_{n} \exp\left(-it\lambda_n/\hbar\right), \qquad K(t) \sim \langle |\operatorname{Tr} U(t)|^2 \rangle?$$

Spectral statistics

RMT approach. Substitute U(t) by ensemble of unitary random matrices (from the same symmetry class):

 $U(t)
ightarrow U \in \ \mathsf{CUE},\ \mathsf{COE},\ \mathsf{CSE}$

+ Hope for the best

E. Wigner 1955; G.Casati, et al. 1980; O. Bohigas, et al. 1984

Semiclassical approach $\hbar \rightarrow 0$.

Gutzwiller/Berry-Tabor trace formula:

$${\sf Tr} \ U(t) \sim \sum_{\gamma} {\cal A}_{\gamma} \exp\left(rac{i}{\hbar} S_{\gamma}(t)
ight)$$

+ Periodic orbits correlations

M.V. Berry, M. Tabor 1977; M. Berry 1985

Fully chaotic systems

Bohigas-Giannoni-Schmit conjecture:

On the scales of mean level spacing K(t) is universal function, provided by RMT ensemble from the same symmetry class

$$\mathcal{K}(t) = rac{1}{N}\sum_{n=1}^{N}\sum_{m=1}^{N}e^{-rac{it}{\hbar}(\lambda_n-\lambda_m)}\sim\sum_{\gamma,ar\gamma}\mathcal{A}_{\gamma}\mathcal{A}_{ar\gamma}e^{rac{i}{\hbar}(\mathcal{S}_{\gamma}-\mathcal{S}_{ar\gamma})}$$

→ Actions of periodic orbits must correlate! M. Berry 1985, N. Argaman, et. al 1993

Sieber-Richter pairs

Taking into account all possible structures \implies Full RMT result M. Sieber K. Richter 2001, S. Muller, et.al 2004

Integrable systems

$$\mathcal{K}(t)\sim\sum_{\gamma,ar{\gamma}}\mathcal{A}_{\gamma}\mathcal{A}_{ar{\gamma}}e^{rac{i}{\hbar}(\mathcal{S}_{\gamma}-\mathcal{S}_{ar{\gamma}})}$$

Same expression, but **periodic orbits** are "rare", **do not correlate** $\$

Eigenvalues λ_n , n = 1, 2... **do not correlate.** Poissonian statistics M.V. Berry, M. Tabor 1977

End of the story?

Many-body integrable systems

Why it matters?

Two parameters - time t and number of particles N. Number of periodic orbits (PO) γ , their actions S_{γ} grow with both t and N. B. G., V. Al. Osipov, Nonlinearity 29 (2016)

$$\mathcal{K}(t)\sim\sum_{\gamma,ar{\gamma}}\mathcal{A}_{\gamma}\mathcal{A}_{ar{\gamma}}e^{rac{i}{\hbar}(m{S}_{\gamma}-m{S}_{ar{\gamma}})}$$

A) Can we have non-trivial PO correlations in integrable systems?

B) How do they affect spectral correlations, K(t)?

Toy model – Integrable ZZ spin chain

The dimension of the Hilbert space is **enormous** $(2s + 1)^N$. But the system is trivially integrable. What can we say about

$$\mathcal{K}(t) = rac{1}{(2s+1)^N} \left\langle |\mathrm{Tr} U(t)|^2
ight
angle, \quad U(t) = e^{i(s+1/2)t\hat{H}} \; ?$$

Semiclassical limit $s + 1/2 = 1/\hbar_{eff} \rightarrow \infty$

Classical system - Chain of coupled tops:

$$\frac{\hat{s}_n}{\sqrt{s(s+1)}} \to \vec{R} \in S^2, \qquad \vec{R} = (\cos q \sqrt{1-p^2}, \sin q \sqrt{1-p^2}, p)$$
$$H = J \sum_{n=1}^{N} p_n p_{n+1} + \mu p_n^2 + f(p_n)$$

 $p_n \in [-1, 1], q_n \in [0, 2\pi)$ are canonical variables at phase space:

Time evolution:

$$p_n(t) = \text{const.}, \qquad q_n(t) = q_0(0) + tJ(p_{n+1} + p_{n-1} + 2\mu p_n)$$

Periodic orbits/tori

$$q_n(t) = q_n(0) + 2\pi m_n \Longrightarrow$$

$$2\pi m_n = tJ(p_{n+1} + p_{n-1} + 2\mu p_n), \qquad m_n \in \mathbb{Z}$$

Particular case $t = t_0 \equiv \pi/J$:

 $p_{n+1} + p_{n-1} + 2\mu p_n = 0 \mod 2, \qquad n = 1, \dots, N$

For $2\mu \in \mathbb{Z} \Longrightarrow$ The same equation as for cat map periodic orbits!

$$\left(\begin{array}{c}q_{n+1}\\p_{n+1}\end{array}\right) = \left(\begin{array}{cc}2\mu - 1 & 1\\2\mu - 2 & 1\end{array}\right) \left(\begin{array}{c}q_n\\p_n\end{array}\right) \bmod 1,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Periodic orbits at $t = t_0$

 $p_{n+1} + p_{n-1} + 2\mu p_n = 0 \mod 2,$ $n = 1, \dots, N$ A) For $|\mu| > 1$ full **spatial chaos**. Number of PO grows exponentially with *N*:

 $\# PO \sim \Lambda^N, \qquad \Lambda + \Lambda^{-1} = 2\mu, \quad \Lambda > 1$

B) For $|\mu| < 1$ all PO of the cat map are elliptic: $\Lambda_{1,2} = e^{\pm i\omega}$. Number of PO orbits does not grow with N! Non-trivial PO appear if $\omega = 2\pi r/m$, $\mu = \cos(2\pi r/m)$

C) For $\mu = 1$ all PO are parabolic: $\Lambda_{1,2} = 1$. Number of PO grows only algebraically with N

For (B) and (C) no spatial chaos!

Periodic orbits/tori. Time dependence.

Shorter times $t < t_0$. Dual (spatial) dynamical system is contracting. **Example:** $t = t_0/\ell$ with ℓ integer. PO equation:

 $0 \mod 2\ell = p_{n+1} + p_{n-1} + 2\mu p_n,$

Any solution of this equation is also solution of

0 mod 2 =
$$p_{n+1} + p_{n-1} + 2\mu p_n$$

↓

POs of spin chain at $t = t_0/\ell$ are subset of POs at $t = t_0$.

Longer times $t > t_0$. Dual system is expanding. POs of spin chain at $t = t_0$ are subset of POs at $t = t_0 \ell$.

Number of POs grows algebraically $\sim (t/t_0)^N$ with t, but exponentially with N if $|\mu| > 1$.

Quantum dual evolution

$$\underbrace{\frac{\operatorname{Tr} e^{i\hat{H}t(s+1/2)}}{\text{time evolution}}}_{s_n=-s,\dots+s} = \sum_{\{s_n=-s,\dots+s\}} e^{i2tJ/(2s+1)\sum_{n=1}^N s_n s_{n+1} + \mu s_n^2 + f(s_n)}$$
$$= (2s+1)^{N/2} \underbrace{\operatorname{Tr} \tilde{U}^N}_{dual evolution}$$

$$\langle m|\tilde{U}|n\rangle = rac{1}{\sqrt{2s+1}}e^{i2tJ(mn+\mu n^2+f(n))/(2s+1)}, \quad m,n\in [-s,+s]$$

・ロト・日本・モート モー うへぐ

In general $ilde{U}$ is **non-unitary** (2s+1) imes (2s+1) matrix

Spectral form factor: $K(t, N) = \langle |\text{Tr } \tilde{U}^N|^2 \rangle$

The roles of t and N are exchanged M. Akila, P. Braun, D. Waltner, B. G., T. Guhr (2017) Quantum chaos in integrable system

For $t = t_0$, \tilde{U} is unitary! In particular if $|\mu| > 1$ integer, \tilde{U} is quantum (perturbed) cat map ! \Longrightarrow

RMT can be used to evaluate $\langle |\text{Tr } \tilde{U}^N|^2 \rangle$. E.g., for broken time reversal invariance:

$$\mathcal{K}(t=t_0, \mathcal{N}) = \left\{ egin{array}{cc} \mathcal{N}, & ext{for } 1 \leq \mathcal{N} \leq 2s+1 \ 2s+1, & ext{for } 2s+1 \leq \mathcal{N} \end{array}
ight.$$

Semiclassical point of view. For large chains $N \sim 2s + 1$ correlations between PO play important role even for short times! Emergence of spatial Sieber-Richter pairs.

Quantum chaos for shorter times

For $t < t_0$, \tilde{U} is non-unitary

$$\langle m|\tilde{U}|n
angle = rac{1}{\sqrt{2s+1}}e^{ilpha 2\pi(mn+\mu n^2)/(2s+1)}, \qquad lpha = t/t_0$$

If $\alpha = 1/\ell$ and ℓ is integer

$$\operatorname{Tr} \tilde{U}^{N} = \ell^{N/2} \operatorname{Tr} \left(U_{cat} P \right)^{N},$$

where U_{cat} is $\ell(2s+1) \times \ell(2s+1)$ unitary quantization of cat map and P is projection on a part of the phase space $p \in (-\alpha, \alpha) \Longrightarrow$

\tilde{U} is quantum cat map with absorption

For $N o \infty$, ${
m Tr} \, { ilde U}^N$ is dominated by the largest eigenvalue of ${ ilde U}$

For smaller N non-unitary RMT ensembles can be used to evaluate $K(t, N) = \langle |\text{Tr } \tilde{U}^N|^2 \rangle$

Quantum chaos for longer times

For $t > t_0$, \tilde{U} is non-unitary. In a special case $t = t_0 \ell$ and $(2s + 1)/\ell$ is an integer

$$\mathrm{Tr}\,\tilde{U}^{N} = \ell^{N/2}\mathrm{Tr}\,(U_{cat})^{N}\,,$$

where U_{cat} is $\ell^{-1}(2s+1) \times \ell^{-1}(2s+1)$ unitary quantization of cat map.

The form factor:

$$\mathcal{K}(t, \mathcal{N}) = \left(rac{t}{t_0}
ight)^{\mathcal{N}} \langle |\mathrm{Tr}\,(U_{cat})^{\mathcal{N}}|^2
angle$$

Can be evaluated by RMT or semiclassically i.e., by PO correlations

□ Number of periodic orbits in integrable systems can grow exponentially with number of particles. **Spatial chaos**

□ Periodic orbits do have non-trivial correlations. **Spatial Sieber-Richter pairs.**

□ These correlations are important for long range energy (short time) spectral statistics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Beyond integrable systems

Many-body semiclassics:

Semiclassics based on PO correlations
 M. Akila, D. Waltner, P. Braun, B. G., T. Guhr (2018)
 Universality for short *T*. Application of RMT.