Quantum chaos versus quantum complexity

Boris Gutkin

Holon Institute of Technology (HIT)
Yad Hashmona, October 2018

Outline of the talk

- Motivation: Chaos versus complexity.
- Integrable spin chains. Classical chaos.
- Integrable spin chains. Quantum chaos.

Duisburg collaborators:
M. Akila, P. Braun, T. Guhr, D. Waltner

Classical Chaos

Integrable Hamiltonian systems. For 2N dimensional system, there are N integrals of motion \Longrightarrow

Dynamics are "regular". No ergodicity, $\delta(t) \sim t$. Number of periodic orbits grows (at best) algebraically with t

Hyperbolic Hamiltonian systems. Exponential sensitivity to initial conditions: $\delta(t) \sim \delta(0) e^{\lambda t} \Longrightarrow$

Dynamics are "chaotic". Only energy is conserved, Ergodicity. Number of periodic orbits grows exponentially

Quantum spectrum

Quantum: $\quad-\Delta \varphi_{n}=\lambda_{n} \varphi_{n},\left.\varphi_{n}\right|_{\partial \Omega}=0 \quad \varphi_{n} \in L^{2}(\Omega)$

Hamiltonian Systems \Longleftrightarrow Unitary evolution $U(t)=e^{-\frac{i}{\hbar} H t}$
Statistics of $\bar{\lambda}_{n}=\lambda_{n} / \Delta(\Delta$-mean level spacing $)$:

$$
\left.\operatorname{Tr} U(t)=\sum_{n} \exp \left(-i t \lambda_{n} / \hbar\right),\left.\quad K(t) \sim\langle | \operatorname{Tr} U(t)\right|^{2}\right\rangle ?
$$

Spectral statistics

RMT approach. Substitute $U(t)$ by ensemble of unitary random matrices (from the same symmetry class):

$$
U(t) \rightarrow U \in \text { CUE, COE, CSE }
$$

+ Hope for the best
E. Wigner 1955; G.Casati, et al. 1980; O. Bohigas, et al. 1984

Semiclassical approach $\hbar \rightarrow 0$. Gutzwiller/Berry-Tabor trace formula:

$$
\operatorname{Tr} U(t) \sim \sum_{\gamma} \mathcal{A}_{\gamma} \exp \left(\frac{i}{\hbar} S_{\gamma}(t)\right)
$$

+ Periodic orbits correlations
M.V. Berry, M. Tabor 1977; M. Berry 1985

Fully chaotic systems

Bohigas-Giannoni-Schmit conjecture:
On the scales of mean level spacing $K(t)$ is universal function, provided by RMT ensemble from the same symmetry class

$$
K(t)=\frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} e^{-\frac{i t}{\hbar}\left(\lambda_{n}-\lambda_{m}\right)} \sim \sum_{\gamma, \bar{\gamma}} \mathcal{A}_{\gamma} \mathcal{A}_{\bar{\gamma}} e^{\frac{i}{\hbar}\left(S_{\gamma}-S_{\bar{\gamma}}\right)}
$$

\Longrightarrow Actions of periodic orbits must correlate!
M. Berry 1985, N. Argaman, et. al 1993

Sieber-Richter pairs
Taking into account all possible structures \Longrightarrow Full RMT result M. Sieber K. Richter 2001, S. Muller, et.al 2004

Integrable systems

$$
K(t) \sim \sum_{\gamma, \bar{\gamma}} \mathcal{A}_{\gamma} \mathcal{A}_{\bar{\gamma}} e^{\frac{i}{\hbar}\left(S_{\gamma}-S_{\bar{\gamma}}\right)}
$$

Same expression, but periodic orbits are "rare", do not correlate I
Eigenvalues $\lambda_{n}, n=1,2 \ldots$ do not correlate. Poissonian statistics M.V. Berry, M. Tabor 1977

GUE form factor

End of the story?

Many-body integrable systems

Why it matters?

Two parameters - time t and number of particles N. Number of periodic orbits (PO) γ, their actions S_{γ} grow with both t and N. B. G., V. Al. Osipov, Nonlinearity 29 (2016)

$$
K(t) \sim \sum_{\gamma, \bar{\gamma}} \mathcal{A}_{\gamma} \mathcal{A}_{\bar{\gamma}} e^{\frac{i}{\hbar}\left(S_{\gamma}-S_{\bar{\gamma}}\right)}
$$

A) Can we have non-trivial PO correlations in integrable systems?
B) How do they affect spectral correlations, $K(t)$?

Toy model - Integrable ZZ spin chain

$$
\hat{H}=\frac{J}{(s+1 / 2)^{2}} \sum_{n=1}^{N} \underbrace{\hat{S}_{n}^{z} \hat{S}_{n+1}^{z}}_{\text {interaction }}+\underbrace{\mu\left(\hat{S}_{n}^{z}\right)^{2}+f\left(\hat{S}_{n}^{z}\right)}_{\text {ext. field }},
$$

$\hat{\boldsymbol{S}}_{n}=\left(\hat{S}_{n}^{x}, \hat{S}_{n}^{y}, \hat{S}_{n}^{z}\right), \quad \hat{\boldsymbol{S}}_{n}^{2}=s(s+1)$
The dimension of the Hilbert space is enormous $(2 s+1)^{N}$. But the system is trivially integrable. What can we say about

$$
\left.K(t)=\left.\frac{1}{(2 s+1)^{N}}\langle | \operatorname{Tr} U(t)\right|^{2}\right\rangle, \quad U(t)=e^{i(s+1 / 2) t \hat{H}} ?
$$

Semiclassical limit $s+1 / 2=1 / \hbar_{\text {eff }} \rightarrow \infty$

Classical system - Chain of coupled tops:

$$
\begin{gathered}
\frac{\hat{\boldsymbol{s}}_{n}}{\sqrt{s(s+1)}} \rightarrow \vec{R} \in S^{2}, \quad \vec{R}=\left(\cos q \sqrt{1-p^{2}}, \sin q \sqrt{1-p^{2}}, p\right) \\
H=J \sum_{n=1}^{N} p_{n} p_{n+1}+\mu p_{n}^{2}+f\left(p_{n}\right)
\end{gathered}
$$

$p_{n} \in[-1,1], q_{n} \in[0,2 \pi)$ are canonical variables at phase space:

Time evolution:

$$
p_{n}(t)=\text { const. }, \quad q_{n}(t)=q_{0}(0)+t J\left(p_{n+1}+p_{n-1}+2 \mu p_{n}\right)
$$

Periodic orbits/tori

$$
\begin{aligned}
& q_{n}(t)=q_{n}(0)+2 \pi m_{n} \\
& 2 \pi m_{n}=t J\left(p_{n+1}+p_{n-1}+2 \mu p_{n}\right), \quad m_{n} \in \mathbb{Z}
\end{aligned}
$$

Particular case $t=t_{0} \equiv \pi / J$:

$$
p_{n+1}+p_{n-1}+2 \mu p_{n}=0 \bmod 2, \quad n=1, \ldots, N
$$

For $2 \mu \in \mathbb{Z} \Longrightarrow$
The same equation as for cat map periodic orbits!

$$
\binom{q_{n+1}}{p_{n+1}}=\left(\begin{array}{cc}
2 \mu-1 & 1 \\
2 \mu-2 & 1
\end{array}\right)\binom{q_{n}}{p_{n}} \bmod 1,
$$

Periodic orbits at $t=t_{0}$

$$
p_{n+1}+p_{n-1}+2 \mu p_{n}=0 \quad \bmod 2, \quad n=1, \ldots, N
$$

A) For $|\mu|>1$ full spatial chaos. Number of PO grows exponentially with N :

$$
\# \mathrm{PO} \sim \Lambda^{N}, \quad \Lambda+\Lambda^{-1}=2 \mu, \quad \Lambda>1
$$

B) For $|\mu|<1$ all PO of the cat map are elliptic: $\Lambda_{1,2}=e^{ \pm i \omega}$. Number of PO orbits does not grow with N ! Non-trivial PO appear if $\omega=2 \pi r / m, \mu=\cos (2 \pi r / m)$
C) For $\mu=1$ all PO are parabolic: $\Lambda_{1,2}=1$.

Number of PO grows only algebraically with N
For (B) and (C) no spatial chaos!

Periodic orbits/tori. Time dependence.

Shorter times $t<t_{0}$. Dual (spatial) dynamical system is contracting. Example: $t=t_{0} / \ell$ with ℓ integer. PO equation:

$$
0 \bmod 2 \ell=p_{n+1}+p_{n-1}+2 \mu p_{n},
$$

Any solution of this equation is also solution of

$$
0 \bmod 2=p_{n+1}+p_{n-1}+2 \mu p_{n}
$$

\Downarrow
POs of spin chain at $t=t_{0} / \ell$ are subset of POs at $t=t_{0}$.
Longer times $t>t_{0}$. Dual system is expanding. POs of spin chain at $t=t_{0}$ are subset of POs at $t=t_{0} \ell$.
Number of POs grows algebraically $\sim\left(t / t_{0}\right)^{N}$ with t, but exponentially with N if $|\mu|>1$.

Quantum dual evolution

$$
\begin{aligned}
& \begin{aligned}
& \underbrace{\operatorname{Tr} e^{i \hat{H} t(s+1 / 2)}=}_{\text {time evolution }} \sum_{\left\{s_{n}=-s, \cdots+s\right\}} e^{i 2 t J /(2 s+1) \sum_{n=1}^{N} s_{n} s_{n+1}+\mu s_{n}^{2}+f\left(s_{n}\right)} \\
&=(2 s+1)^{N / 2} \underbrace{\operatorname{Tr} \tilde{U}^{N}}_{\text {dual evolution }}
\end{aligned} \\
& \langle m| \tilde{U}|n\rangle=\frac{1}{\sqrt{2 s+1}} e^{i 2 t J\left(m n+\mu n^{2}+f(n)\right) /(2 s+1)}, \quad m, n \in[-s,+s]
\end{aligned}
$$

In general \tilde{U} is non-unitary $(2 s+1) \times(2 s+1)$ matrix
Spectral form factor: $\left.K(t, N)=\left.\langle | \operatorname{Tr} \tilde{U}^{N}\right|^{2}\right\rangle$
The roles of t and N are exchanged M. Akila, P. Braun, D. Waltner, B. G., T. Guhr (2017)

Quantum chaos in integrable system

For $t=t_{0}, \tilde{U}$ is unitary! In particular if $|\mu|>1$ integer, \tilde{U} is quantum (perturbed) cat map $!\Longrightarrow$

RMT can be used to evaluate $\left.\left.\langle | \operatorname{Tr} \tilde{U}^{N}\right|^{2}\right\rangle$. E.g., for broken time reversal invariance:

$$
K\left(t=t_{0}, N\right)= \begin{cases}N, & \text { for } 1 \leq N \leq 2 s+1 \\ 2 s+1, & \text { for } 2 s+1 \leq N\end{cases}
$$

Semiclassical point of view. For large chains $N \sim 2 s+1$ correlations between PO play important role even for short times! Emergence of spatial Sieber-Richter pairs.

Quantum chaos for shorter times

For $t<t_{0}, \tilde{U}$ is non-unitary

$$
\langle m| \tilde{U}|n\rangle=\frac{1}{\sqrt{2 s+1}} e^{i \alpha 2 \pi\left(m n+\mu n^{2}\right) /(2 s+1)}, \quad \alpha=t / t_{0}
$$

If $\alpha=1 / \ell$ and ℓ is integer

$$
\operatorname{Tr} \tilde{U}^{N}=\ell^{N / 2} \operatorname{Tr}\left(U_{c a t} P\right)^{N}
$$

where $U_{\text {cat }}$ is $\ell(2 s+1) \times \ell(2 s+1)$ unitary quantization of cat map and P is projection on a part of the phase space $p \in(-\alpha, \alpha) \Longrightarrow$
\tilde{U} is quantum cat map with absorption
For $N \rightarrow \infty, \operatorname{Tr} \tilde{U}^{N}$ is dominated by the largest eigenvalue of \tilde{U}
For smaller N non-unitary RMT ensembles can be used to evaluate $\left.K(t, N)=\left.\langle | \operatorname{Tr} \tilde{U}^{N}\right|^{2}\right\rangle$

Quantum chaos for longer times

For $t>t_{0}, \tilde{U}$ is non-unitary.
In a special case $t=t_{0} \ell$ and $(2 s+1) / \ell$ is an integer

$$
\operatorname{Tr} \tilde{U}^{N}=\ell^{N / 2} \operatorname{Tr}\left(U_{c a t}\right)^{N},
$$

where $U_{c a t}$ is $\ell^{-1}(2 s+1) \times \ell^{-1}(2 s+1)$ unitary quantization of cat map.
The form factor:

$$
\left.K(t, N)=\left.\left(\frac{t}{t_{0}}\right)^{N}\langle | \operatorname{Tr}\left(U_{c a t}\right)^{N}\right|^{2}\right\rangle
$$

Can be evaluated by RMT or semiclassically i.e., by PO correlations

Summary

\square Number of periodic orbits in integrable systems can grow exponentially with number of particles. Spatial chaos
\square Periodic orbits do have non-trivial correlations. Spatial Sieber-Richter pairs.
\square These correlations are important for long range energy (short time) spectral statistics

Beyond integrable systems

Many-body semiclassics:

\square Semiclassics based on PO correlations
M. Akila, D. Waltner, P. Braun, B. G., T. Guhr (2018)
\square Universality for short T. Application of RMT.

