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Outline

What? Counting fixed points in large complex systems

Why? Stability analysis of large complex systems

How? Kac–Rice formalism + random matrix techniques



What is a complex system?



Complex systems

Discrete time dynamical systems represent a paradigm
in the study of complex and chaotic systems

xn+1 = f (xn)

f : RN → RN is some “complicated” map
xn ∈ RN is a point in space at time n > 0
x0 is an initial condition



Will a large complex system be stable?



The random linear model

Random linear model (version 1):

f (x) = G · x
G is an N× N matrix whose entries are
i.i.d. centred Gaussians with variance σ2/N.

Random linear model (version 2):

E[f (x)] = 0 E[f (x)⊗ (f (y))T ] =
σ2

N
(x · y) IN

where
x · y is the usual Euclidean inner product
IN is an N× N identity matrix



The random linear model

Spectral radius

ρ(σ) = max{|λ| : λ is a eigenvalue of G}

If ρ(σ) < 1 then the linear model is stable
If ρ(σ) > 1 then the linear models is unstable

May–Wigner transition:
Spectral radius

lim
N→∞

ρ(σ) = σ

The large-N linear model is
stable if σ < 1
unstable if σ > 1
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How to construct a nonlinear model?



Symmetries of the random linear model

The random linear model is defined by

E[f (x)] = 0, E[f (x)⊗ (f (y))T ] =
σ2

N
(x · y) IN

where
x · y is the usual Euclidean inner product
IN is an N× N identity matrix

Symmetries:
domain-isotropic
E[f (Ux)⊗ (f (Uy))T ] = E[f (x)⊗ (f (y))T ], ∀ U ∈ O(N)

codomain-isotropic
E[Vf (x)⊗ (Vf (y))T ] = E[f (x)⊗ (f (y))T ], ∀ V ∈ O(N)



The nonlinear model

Let f be centred Gaussian random map with covariance

E[f (x)⊗ f (y)T ] =
1

N
κ
�‖x− y‖2

2

�

IN
where
‖•‖ is the Euclidean norm
κ : R+ → R+ is a “nice” function

Symmetries:
domain-isotropy
codomain-isotropy
homogeneity
E[f (x+ a)⊗ (f (y+ a))T ] = E[f (x)⊗ f (y)T ] ∀ a ∈ RN



How many fixed point
does a complex system have?



Mean number of fixed points

Theorem
Let Nf be an integer valued random variable, which
gives the number of fixed points for the dynamical
system described earlier, then we have

E[Nf ] = EG[|det(σG− IN)|]

where
G is an N×N matrix whose entries are i.i.d. centred
Gaussian random variables with variance 1/N
EG is the expectation w.r.t. G
IN is the N× N identity matrix
σ = (−κ′(0))1/2 > 0 is a constant



Sketch of derivation (part I)

Our problem of finding the number of fixed points is
equivalent to the multivariate crossing problem

0 = f (x)− x

Multivariate Kac–Rice formula:

E[Nf ] =

∫

RN
Ef ,∇f

h

δN(f (x)− x)
�

�det
ij

(∂ifj(x)− δi,j)
�

�

i

dx

where
∇f = (∂jfi)ij is a RN×N-valued Gaussian random map
Ef ,∇f is the joint expectation w.r.t. f and ∇f
δij is the Kronecker delta

δN(x) is a Dirac delta



Sketch of derivation (part II)

We recall that we have the covariance

E[fi(x)fj(y)] =
1

N
κ
�‖x− y‖2

2

�

δij

and consequently
E[fi(x)fj(x)] = +

1

N
κ(0)δij

E[∂kfi(x)fj(x)] = 0

E[∂kfi(x)∂ℓfj(x)] = −
1

N
κ′(0)δijδkℓ

The fields f (x) and ∇f (x) are uncorrelated and
therefore independent
The variance of f (x) and ∇f (x) does not dependent
on the location x



Sketch of derivation (part III)

E[Nf ] =

∫

RN
Ef ,∇f

h

δN(f (x)− x)
�

�det
ij

(∂ifj(x)− δi,j)
�

�

i

dx

=

∫

RN
Ef

h

δN(f (x)− x)
i

E∇f

h

�

�det
ij

(∂ifj(x)− δi,j)
�

�

i

dx

=

∫

RN
Ef

h

δN(f (0)− x)
i

E∇f

h

�

�det
ij

(∂ifj(0)− δi,j)
�

�

i

dx

= EG

h

�

�det(σG− IN)
�

�

i

where G = (Gki = ∂kfi(0)/σ)ki is a centred Gaussian ran-
dom matrix with covariance

EG[GkiGℓj] =
1

N
δijδkℓ



How many fixed points does complex system have?

We recall that
E[Nf ] = EG

�

|det(σG− IN)|
�

where right-hand side is easy to estimate numerically
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Multi-layered systems



Multilayered systems

Let f1, . . . , fD be independent Gaussian maps as de-
scribed earlier, i.e.

domain-isotropic
codomain-isotropic
homogeneous

Consider a dynamical system xn+1 = f (xn). If

f (x) = fD ◦ · · · ◦ f2 ◦ f1(x),

then we say that the system is multilayered
with depth D.

If D = 1, then we say that the system is single-layered.



Mean number of fixed points

Theorem

Let ND
f be an integer valued random variable, which

gives the number of fixed points for the dynamical
system described earlier, then we have

E[ND
f
] = EG1,...,GD [|det(σDG1 · · ·GD − IN)|]

where
G1, . . . ,GD are independent N×N matrices whose
entries are i.i.d. centred Gaussian random
variables with variance 1/N
EG1,...,GD is the joint expectation w.r.t. G1, . . . ,GD

σ = (σ1 · · ·σD)1/D is the geometric mean
σd = (−κ′d(0))

1/2 > 0 is a constant



Number of fixed points for a multilayered system
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Asymptotic results for large systems



The high dimensional case

We have

E[ND
f
] ∼

(p
2e

ND(logσ+ 1
2 (

1
σ2 −1))

, σ > 1
1, σ < 1

for large N.
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The high dimensional case

We have

E[ND
f
] ∼

(p
2e

ND(logσ+ 1
2 (

1
σ2 −1))

, σ > 1
1, σ < 1

for large N.
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Sketch of derivation of asymptotic result (Part I)

We are interested in the quantity

EX[|det(X− λIN)|]
where X is an asymmetric random matrix.

Assume X has n real and 2m complex eigenvalues
λ1, . . . , λn: real eigenvalues
z1, z∗1 , . . . , zm, z

∗
m

: complex eigenvalues

and the JPDF for the eigenvalues is

PN,n(λ1, . . . , λn, z1, . . . , zm) =

1

n!m!

1

ZN

n
∏

k=1

wR(λk)
m
∏

ℓ=1

wC(zℓ)

× |4(λ1, . . . , λn, z1, z
∗
1 , . . . , zm, z

∗
m
)|



Sketch of derivation of asymptotic result (Part II)

We are interested in the quantity

EX[|det(X− λIN)|]
where X is an asymmetric random matrix.

Lemma

EX
�

|det(X− λIN)|
�

=
1

wR(λ)

ZN+1

ZN
ρR,N+1(λ)

where ρR,N(λ) is the mean spectral density of the real
eigenvalues of N× N matrix

The proof the lemma is based on the trivial identity

4(x0, x1, . . . , xN) =4(x1, . . . , xN)
N
∏

k=1

(xk − x0).



Sketch of derivation of asymptotic result (Part III)

We are interested in the quantity

EX[|det(X− λIn)|] =
1

wR(λ)

ZN+1

ZN
ρR,N+1(λ)

where X is an asymmetric random matrix.
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Summary



Summary

Similarly to May’s random linear model, our non-linear
model has a phase transition at the critical point σc = 1.

If σ < 1 our non-linear system has a single fixed
point
If σ > 1 then the number of fixed points grows
exponentially fast with N

The expected number of fixed points is universal in the
sense that does not depend on the full structure of the
covariance functions

κ1, . . . , κD : R+ → R+

but only on local quantity

σ = ((−κ′1(0)) · · · (−κ
′
D
(0))1/D



References

Ipsen & Forrester, arXiv:1807.05790
Ipsen & Kieburg, PRE 89 (2014) 032106
Forrester & Ipsen, LAA 510 (2016) 259
May, Nature 238 (1972) 413
Fyodorov & Khoruzhenko, PNAS 113 (2016) 6827
Simm, ECP 22 (2017) 11

Thanks for your attention!


	Title page
	What is a complex system?
	Will a large complex system be stable?
	How to construct a nonlinear model?
	How many fixed points does a complex system have?
	Multi-layered systems
	Asymptotic results for large systems
	Summary

