\\ \title{
Experimental Notes on the Partial Sums of the Riemann Zeta Function\\ \title{
Experimental Notes on the Partial Sums of the Riemann Zeta Function \\ \\ Yochay Jerby
} \\ \\ Yochay Jerby
}

Faculty of Sciences, Holon Institute of Technology (HiT), Holon 5810201, ISRAEL
E-mail: yochay.jerby@gmail.com

Partial Sums of Zeta \& the Spectral Functions
The Riemann zeta function is defined in the critical strip $0 \leq \operatorname{Re}(z) \leq 1$ by

$$
\zeta(z):=\frac{1}{1-2^{1-2}} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{z}}
$$

For $N \in \mathbb{N}$ Let us consider the corresponding partial sums

$$
S_{N}(z):=\frac{1}{1-2^{1-z}} \sum_{k=1}^{N} \frac{(-1)^{k+1}}{k^{z}} .
$$

Fijure 1 shows the typical behavior

figure 1: Values of $\left|S_{N}\left(0.5\left(1-e^{-2}\right)+2 \cdot 10^{4} i\right)\right|$ for $N=1, \ldots, 2 \cdot 10^{4}$ Define $N_{m}:=\left[\frac{1 m(z)}{(2 m+1) \pi}\right]$. The partial sums preform steep surges around N_{m} (ass seen in Fig. 1) This leads us the define the m-th spectral function to be

$$
\lambda_{m}(z): \zeta(z)-S_{\frac{2}{2}\left(N_{n+1}-N_{n}\right)}=\frac{1}{1-2^{1-2}} \sum_{n=\left[\frac{m m(z)}{m m}\right]}^{\infty} \frac{(-1)^{k+1}}{k^{z}} .
$$

The Euler-Sondow Formula and Spectrum
The Euer-Sondow formula expresses zeta in the complex plane as the following series (see $[2]$:

$$
\left.\zeta(z):=\frac{1}{1-2^{1-2}} \sum_{n=0^{2+1}}^{\infty} \frac{1}{2^{n+1}} \sum_{k=0}^{n} C_{k}^{n}\right)_{k}^{n} \frac{(-1)^{k}}{(k+1)^{2}} .
$$

$$
\tilde{S}_{N}(z)=\frac{1}{1-2^{1-1}} \sum_{n=0}^{N} \frac{1}{n^{n+1}} \sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{k}}{(k+1)^{k}} .
$$

figure 2 shows a comparison between the classical $S_{N}(z)$ and the E5-partial sums $\tilde{S}_{N}(z)$

Figure : : $\left|S_{S_{N}}(z)\right|$ and $\left|\tilde{S}_{N}(z)\right|$ for $z=0.05+200 i$ and $N=0, \ldots, 200$
We simia
formula

$$
\tilde{\lambda}_{m}(z)=\frac{1}{1-2^{1-2}} \sum_{n=\left[\frac{m}{m(z)}\right]}^{\infty} \frac{1}{n^{n+1}} \sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{k}}{(k+1)^{k}} .
$$

The First Spectral Function and the Core
In the spectral theory of differential operators the first eigenvalue is known to have a
distinguished role (fundamental tone, ground state, vacuum, etc..). Figure 3 shows
the regulated behavior of the first spectral function $\tilde{x}_{1}(z)$ compared to e eta.

Figure $3: \log \left(\tilde{\lambda}_{1}(0.05+y i)\right)$ and $\log \mid((0.05+y i) \mid$ for $0 \leq y \leq 200$.
Let us define the function

$$
\operatorname{Core}(z):=\frac{2^{2} \pi^{z-1} \sin \sin \left(\frac{\pi}{2}\right) r(1-z)}{z^{2-1-1}} .
$$

Figure 4 shows a comparison between $\operatorname{Core}(z)$ and $\tilde{\lambda}_{1}(z)$

Empirical verification shows that $\operatorname{Core}(z)$ is a rather good approximation of the first spectral function $\tilde{1}_{1}(z)$. In fact, we have: Conjecture: For $0 \leq R e(z) \leq \frac{1}{2}$ we have
$\mid \log \left(\tilde{\lambda}_{1}(z)\right)-\log ($ Core $(z)) \left\lvert\, \leq e^{-\frac{\mid m(z)}{20}-1}\right.$.
The Higher Spectral Functions
Figure 5 shows a comparison between the first and second spectral function

Figure 5: $\log \left|\tilde{x}_{1}(z)\right|$ and $\log \left|\tilde{\lambda}_{2}(z)\right|$ for $0<y<250$:
Motivated by spectral theory of differential operators we define the j-th relative spectral function to be

$$
\delta_{j}(z):=\log \left(\frac{\tilde{\lambda}_{j}(z)}{\bar{j}_{j+1}(z)}\right) .
$$

Figure 6 shows an illustration of, $\delta_{1}(z)$, the first relative spectral function:

Figure 6: $\delta_{1}\left(0.5\left(1-e^{-2}\right)+y i\right)$ for $300 \leq y \leq 450$.
In particular, $\delta_{1}(z)$ is seen to have a strong periodic signal of period $\frac{2 \pi}{\log (3)}$. Figure 7
shows the spectral Fourier decomposition of δ_{j} for $j=1,2,3$

Figure 7 : Fourier decomposition of of for $j=1,2,3$ with $150 \leq \operatorname{Im}(z) \leq 650$. Relations To Zeta Monotonicity
$\ln [3]$ R. Spira showed that the Riemann Hypothesis is equivalent to the following monotonicity property

$$
\left|\xi\left(x_{2}+y i\right)\right|<\left|\zeta\left(x_{1}+y i\right)\right|
$$

for any $x_{1}<x_{2} \leq 0.5$ and $6.29<y$. The monotonicity property is illustrated in Fig. 8
 Let us define the function
$\eta(y, t):=e^{t}\left(\left|\zeta\left(0.5\left(1-e^{-t}\right)+y i\right)\right|-|\zeta(0.5+y i)|\right.$
 any $t_{1}<t_{2}$ and $6.29<y$. Fig. 9 Illustrates η-monotonicity for initial values:

Figure $9: \log (\eta(\gamma, t))-t$ for $t=0, \ldots, 4$ in the domain $6.29<y<250$.
Set $\lambda_{j}^{\eta}(y, t):=e^{t}\left(\left|\lambda_{j}\left(0.5\left(1-e^{-t}\right)+y i\right)\right|-\left|\lambda_{j}(0.5+y i)\right|\right)$. We have

Figure 10: $\log \left(\lambda_{1}^{\eta}(y, t)\right)-t$ for $t=0, \ldots, 4$ in the domain $6.29<y<250$. For all (y, t) such that $|\zeta(0.5+y i)| \neq 0$ we refer to

$$
\tilde{\eta}(y, t):=\frac{\eta(y, t)}{|\zeta(0.5+y i)|}=e^{t}\left(\frac{\left|K\left(0.5\left(1-e^{-t}\right)+y i\right)\right|}{|\zeta(0.5+y i)|}-1\right)
$$

as the taming function of $\eta(y, t)$. Figure 11 shows the regulated behavior of $\tilde{\eta}(y, t)$:

Figure $11: \tilde{\eta}(y, t)$ for $t=0,1,2,3$ over the domain $0<y<75$ (left) and $\tilde{\eta}(y, 3)$ over the domain $0<y<10000$ (right).
$X(y, t):=e^{t}\left(\frac{\left|x\left(0.5\left(1-e^{-t}\right)+y i\right)\right|}{|x(0.5+y i)|}-1\right)=e^{t}\left(\left|x\left(0.5\left(1-e^{-t}\right)+y i\right)\right|-1\right)$ Figure 12 illustrates the asymptotic relation between $\tilde{\eta}(y, t)$ and $\mathrm{x}(y, t)$:

Figure 12: $\tilde{\eta}\left(e^{s}, t\right), X\left(e^{s}, t\right), \frac{1}{4} s+\frac{1}{2}$ for $t=1(a), t=5(b), t=7(c)$ and $s \in[0,25]$ The function $\tilde{\eta}(y, t)$ is seen to have slower rate of growth than $X(y, t)$ (the difference is precisely due to the contribution of the higher spectral function). However, the function $\frac{1}{4} \log (y)+\frac{1}{2}$ is seen to be a bound for both $\tilde{\eta}(y, t)$ and $X(y, t)$. This leads to:

Conjecture: $\frac{1}{4} \log (y)+C \leq \tilde{\eta}(y, t)$ for any $y>6.29$ and $t \geq 0$ for some $C \geq \frac{1}{2}$
Let us define the spectral functions of the taming function $\tilde{\eta}(y, t)$ as follows: $\lambda_{j}^{\pi}(y, t)=e^{t}\left(\frac{\left|\lambda_{j}\left(0.5\left(1-e^{-t}\right)+y i\right)\right|}{\left|\lambda_{j}(0.5+y i)\right|}-1\right)$
Consider $\tilde{\eta}_{\alpha}(y, t)=\lambda_{N(\alpha, y)}^{\eta}(y, t)$, where $N(\alpha, y):=1+\left[\frac{0.00 \alpha}{\pi}\right]$.

Concluding Remarks

the sequence of spectra
Cunctions $\lambda_{\mathcal{\prime}}(z)$ associated to the Riemann zeta function $\zeta(z)$. We suggest that the spectral functions interpolate between the highly regulated core function $\operatorname{Core}(z) \approx \tilde{1}_{1}(z)$ and $\zeta(z)$ by adding the higher relative spectral functions $\delta_{1}(z)$ (which are in turn governed by periodic signals of specific periods). Possible relations to the monotonicity conjecture were presented. References

1. Y. Jerby, An experimental study of the monotonicity property of the Riemann zeta 1. function, axxivi:1707.01754.
2. J. Sondow, Analytic Continuation of Riemann's zeta Function and Values at Negative Integers Via Euler's STransformation of Series, , Proceededings of the the American
Mathematical Societ Vol 120,

