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Partial Sums of Zeta & the Spectral Functions

The Riemann zeta function is defined in the critical strip 0 ≤ 𝑅𝑒 𝑧 ≤ 1 by

𝜁 𝑧 ≔
1

1 − 2

−1

𝑘
.

For 𝑁 ∈ ℕ Let us consider the corresponding partial sums 

𝑆 𝑧 ≔
1

1 − 2

−1

𝑘
.

Figure 1 shows the typical behavior 

Figure 1: Values of 𝑆 (0.5 1 − 𝑒 + 2 ⋅ 10 𝑖) for 𝑁 = 1, … , 2 ⋅ 10 .

Define 𝑁 ≔
( )

( )
. The partial sums preform steep surges around 𝑁 (ass seen 

in Fig. 1) This leads us the define the m-th spectral function to be 

𝜆 𝑧 ≔ 𝜁 𝑧 − 𝑆 =
1

1 − 2

−1

𝑘
.
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The Euler-Sondow Formula and Spectrum

The First Spectral Function and the Core

In the spectral theory of differential operators the first eigenvalue is known to have a 

distinguished role (fundamental tone, ground state, vacuum, etc…).  Figure 3 shows 

the regulated behavior of the first spectral function 𝜆 𝑧  compared to zeta.

Figure 3: log (𝜆 0.05 + 𝑦𝑖 ) and log 𝜁(0.05 + 𝑦𝑖) for 0 ≤ 𝑦 ≤ 200.

Let us define the function 

𝐶𝑜𝑟𝑒 𝑧 ≔ .

Figure 4 shows a comparison between 𝐶𝑜𝑟𝑒 𝑧 and 𝜆 𝑧

Figure 4: log 𝐶𝑜𝑟𝑒(𝑦𝑖) and log 𝜆 (𝑦𝑖)  for 0 ≤ 𝑦 ≤ 50

Empirical verification shows that 𝐶𝑜𝑟𝑒(𝑧) is a rather good approximation of the first 

spectral function 𝜆 (𝑧). In fact, we have: 

Conjecture: For 0 ≤ 𝑅𝑒 𝑧 ≤  we have

log 𝜆 𝑧 − log (𝐶𝑜𝑟𝑒 𝑧 ) ≤ 𝑒 .

The Higher Spectral Functions

Figure 5 shows a comparison between the first and second spectral function

. 

Figure 5: 𝑙𝑜𝑔 𝜆 (𝑧)  and 𝑙𝑜𝑔 𝜆 (𝑧) for 0 < 𝑦 < 250:

Motivated by spectral theory of differential operators we define the j-th relative 

spectral function to be 

𝛿 𝑧 : = 𝐿𝑜𝑔
𝜆  (𝑧)

𝜆  (𝑧)
.

Figure 6 shows  an illustration of, 𝛿 𝑧 , the first relative spectral function:

Figure 6: 𝛿 0.5 1 − 𝑒 + 𝑦𝑖  for 300 ≤ 𝑦 ≤ 450.

In particular, 𝛿 𝑧 is seen to have a strong periodic signal of period 
 ( )

.  Figure 7 

shows the spectral Fourier decomposition of 𝛿 for 𝑗 = 1,2,3.

Figure 7: Fourier decomposition of 𝛿 for 𝑗 = 1,2,3 with 150 ≤ 𝐼𝑚 𝑧 ≤ 650.

The Euler-Sondow formula expresses zeta in the complex plane as the following series (see [2]): 

𝜁 𝑧 : =
1

1 − 2

1

2

𝑛
𝑘

 
−1

𝑘 + 1
.

We similarly define the partial sums of the Euler-Sondow formula:

𝑆 𝑧 ≔
1

1 − 2

1

2

𝑛
𝑘

 
−1

𝑘 + 1
.

Figure 2 shows a comparison between the classical 𝑆 (𝑧) and the ES-partial sums 𝑆 (𝑧):

Figure 2: 𝑆 (𝑧) and 𝑆 (𝑧) for 𝑧 = 0.05 + 200𝑖 and 𝑁 = 0, … , 200

We similarly define the corresponding spectral functions associated to the Euler-Sondow

formula 

𝜆 𝑧 ≔
1

1 − 2

1

2

𝑛
𝑘

 
−1

𝑘 + 1
.

Relations To Zeta Monotonicity
In [3] R. Spira showed that the Riemann Hypothesis is equivalent to the following 

monotonicity property

𝜁(𝑥 + 𝑦𝑖) < 𝜁(𝑥 + 𝑦𝑖)

for any 𝑥 < 𝑥 ≤ 0.5 and 6.29 < 𝑦. The monotonicity property is illustrated in Fig. 8

Figure 8: 𝜁(0.5 + 𝑦𝑖)  (blue) and 𝜁(0.05 + 𝑦𝑖) (purple) in the 

domain 0 < 𝑦 < 10000 (a) and 1000 < 𝑦 < 1040 (b).

Let us define the function 

𝜂 𝑦, 𝑡 ≔ 𝑒 𝜁 0.5 1 − 𝑒 + 𝑦𝑖 − 𝜁 0.5 + 𝑦𝑖

Note that the monotonicity conjecture implies that  𝑒 𝜂 𝑦, 𝑡 < 𝑒 𝜂(𝑦, 𝑡 ) for 

any 𝑡 < 𝑡  and 6.29 < 𝑦. Fig. 9 Illustrates 𝜂-monotonicity for initial values:

Figure 9: log 𝜂 𝑦, 𝑡 − 𝑡 for 𝑡 = 0, … , 4 in the domain 6.29 < 𝑦 < 250.

Set 𝜆 𝑦, 𝑡 ≔ 𝑒 𝜆 0.5 1 − 𝑒 + 𝑦𝑖 − 𝜆 0.5 + 𝑦𝑖 . We have

Figure 10: log 𝜆 𝑦, 𝑡 − 𝑡 for 𝑡 = 0, … , 4 in the domain 6.29 < 𝑦 < 250.

Figure 11: 𝜂(𝑦, 𝑡) for 𝑡 = 0,1,2,3 over the domain 0 < 𝑦 < 75 (left) and 𝜂(𝑦, 3) over 

the domain 0 < 𝑦 < 10000 (right).

Consider the function

𝑋 𝑦, 𝑡 : = 𝑒
𝜒 0.5 1 − 𝑒 + 𝑦𝑖

𝜒 0.5 + 𝑦𝑖
− 1 = 𝑒 𝜒 0.5 1 − 𝑒 + 𝑦𝑖 − 1

Figure 12 illustrates the asymptotic relation between 𝜂 𝑦, 𝑡  and X 𝑦, 𝑡 :

Figure 12: 𝜂 𝑒 , 𝑡 , 𝑋 𝑒 , 𝑡 , 𝑠 + for 𝑡 = 1 (a), 𝑡 = 5 (b),  𝑡 = 7 (c) and 𝑠 ∈ 0,25

The function 𝜂(𝑦, 𝑡) is seen to have slower rate of growth than 𝑋 𝑦, 𝑡 (the difference 

is precisely due to the contribution of the higher spectral function). However, the 

function log 𝑦 + is seen to be a bound for both 𝜂(𝑦, 𝑡) and 𝑋 𝑦, 𝑡 . This leads to:  

Conjecture: log 𝑦 + 𝐶 ≤ 𝜂 𝑦, 𝑡 for any 𝑦 > 6.29 and 𝑡 ≥ 0 for some 𝐶 ≥ .

Let us define the spectral functions of the taming function 𝜂(𝑦, 𝑡) as follows: 

𝜆 𝑦, 𝑡 ≔ 𝑒
𝜆 0.5 1 − 𝑒 + 𝑦𝑖

𝜆 0.5 + 𝑦𝑖
− 1

Consider 𝜂 𝑦, 𝑡 ≔ 𝜆
,

𝑦, 𝑡 , where 𝑁 𝛼, 𝑦 ≔ 1 +
. . 

Figure 13: 𝜂 𝑦, 20 for 25 < 𝑦 < 45 and 0 < 𝛼 < 100.

Concluding Remarks
Based on the special properties of the partial sums, we introduced the sequence of spectral 

functions 𝜆 (𝑧) associated to the Riemann zeta function 𝜁 𝑧 . We suggest that the spectral 

functions interpolate between the highly regulated core function 𝐶𝑜𝑟𝑒(𝑧) ≈ 𝜆 (𝑧) and 𝜁 𝑧 by  

adding the higher relative spectral functions 𝛿 𝑧 (which are in turn governed by periodic signals 

of specific periods). Possible relations to the monotonicity conjecture were presented.

For all 𝑦, 𝑡  such that 𝜁(0.5 + 𝑦𝑖) ≠ 0 we refer to 

𝜂 𝑦, 𝑡 ≔
𝜂 𝑦, 𝑡

𝜁 0.5 + 𝑦𝑖
= 𝑒

𝜁 0.5 1 − 𝑒 + 𝑦𝑖

𝜁 0.5 + 𝑦𝑖
− 1

as the taming function of 𝜂 𝑦, 𝑡 . Figure 11 shows the regulated behavior of 𝜂 𝑦, 𝑡 :


