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Partial Sums of Zeta & the Spectral Functions
The Riemann zeta function is defined in the critical strip 0 < Re(z) < 1 by
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For N € N Let us consider the corresponding partial sums
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Figure 1 shows the typical behavior
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Figure 1: Values of [Sy (0.5(1 — e™2) + 2 - 10%)] for N = 1,..., 2- 10%,
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Define N, = . The partial sums preform steep surges around N, (ass seen

in Fig. 1) This leads us the define the m-th spectral function to be
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The Euler-Sondow Formula and Spectrum

The Euler-Sondow formula expresses zeta in the complex plane as the following series (see [2]):
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We similarly define the partial sums of the Euler-Sondow formula:
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Figure 2: |5y (2)| and |Sy(2)| for z = 0.05 + 200i and N = 0, ..., 200

We similarly define the cor spectral functions i to the Euler-Sond

formula
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The First Spectral Function and the Core

In the spectral theory of di i the first ei is known to have a

distinguished role (fundamental tone, ground state, vacuum, etc...). Figure 3 shows

the regulated behavior of the first spectral function 4 (z) compared to zeta.
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Figure 3: log(1; (0.05 + yi)) and log¢ (0.05 + yi)| for 0 < y < 200.

Let us define the function

227~ Lsin| z)l‘(l—z)

Core(z) = aier

Figure 4 shows a comparison between Core(z) and 1, (z)
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Figure 4: log|Core(yi)| and log|2, (yi)| for 0 < y < 50

Empirical verification shows that Core(z) is a rather good approximation of the first
spectral function 1, (2). In fact, we have:

Conjecture: For 0 < Re(z) <5 we have
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|1ug(z,(z)) - lﬂg(Core(z))l <e X
The Higher Spectral Functions

Figure 5 shows a comparison between the first and second spectral function
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Figure 5: log| 1, (z)| and log|1,(2)| for 0 < y < 250:
Motivated by spectral theory of differential operators we define the j-th relative

spectral function to be
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Figure 6 shows an illustration of, §; (), the first relative spectral function:
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Figure 6: 6,(0.5(1 — e~2) + yi) for 300 < y < 450.

In particular, 8 (2) is seen to have a strong periodic signal of period

lag(g) Figure 7

shows the spectral Fourier decomposition of §; for j = 1,2,3.

Figure 7: Fourier decomp:sition gjf &jforj = 1,;,3 witF‘lSO < Im(z) < 650.
Relations To Zeta Monotonicity
In [3] R. Spira showed that the Riemann Hypothesis is equivalent to the following
monotonicity property
1¢Gz + D)1 < 1¢Cex +yD)I

forany x; < X, < 0.5 and 6.29 < y. The monotonicity property is illustrated in Fig. 8

domain 0 < y < 10000 (a) and 1000 < y < 1040 (
Let us define the function
n(,t) = e (17(0.5(1 = e™) + yi)| = 1¢(05 + yD))
Note that the monotonicity conjecture implies that e ~*25(y, t,) < e ‘1(y, t;) for

any t; < t, and 6.29 < y. Fig. 9 lllustrates y-monotonicity for initial values:

Figure 9: log(n(y,t)) — t for t = 0, ..., 4 in the domain 6.29 < y < 250.
Set l"(y, t) = e‘(|A/(() 5(1— e+ yi)| — |4;(0.5 + yi)|). We have
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Figure 10: log(ﬂ;’(y, r)) —tfort =0,...,4in the domain 6.29 < y < 250.

For all (y, ¢) such that ¢ (0.5 + yi)| # 0 we refer to
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as the taming function of n(y, t). Figure 11 shows the regulated behavior of 7j(y, t):

Figure 11: 7(y, t) for t = 0,1,2,3 over the domain 0 < y < 75 (left) and /i(y, 3) over
the domain 0 < y < 10000 (right).

Consider the function

X t):=
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Figure 12 illustrates the asymptotic relation between 7j(y, t) and X(y, t):
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Figure 12: 7i(e*,t), X(e°,6), %5 + fort = 1(a), ¢t = 5 (b), t =7 (c) and s € [0,25]

The function 7j(y, t) is seen to have slower rate of growth than X (y, t) (the difference

is precisely due to the contribution of the higher spectral function). However, the

function : log(y) + i is seen to be a bound for both 7j(y, t) and X (y, t). This leads to:

Con'e:ture:i]og(y) +C <7j(y,t) forany y > 6.29 and t = 0 for some C 2%.

Let us define the spectral functions of the taming function 7(y, t) as follows:
= 2;(0.5(1 — e%) + yi
Py ::47' 4050~ e ”'—1)
12;(0.5 + yi)|

Consider fiq (v, £) =
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Figure 13: 77, (y, 20) for 25 < y < 45and 0 < a < 100.

Concluding Remarks

Based on the special properties of the partial sums, we introduced the sequence of spectral
functions 4;(2) associated to the Riemann zeta function {(z). We suggest that the spectral
functions interpolate between the highly regulated core function Core(z) ~ 1y (z) and {(z) by
adding the higher relative spectral functions 8, (z) (which are in turn governed by periodic signals

of specific periods). Possible relations to the monotonicity conjecture were presented.
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