Moments of Moments

Jon Keating
School of Mathematics
University of Bristol
j.p.keating@bristol.ac.uk

October 4, 2018

Joint work with Emma Bailey (University of Bristol).

Joint work with Emma Bailey (University of Bristol).

arXiv:1807.06605

Moments of Characteristic Polynomials

Moments of Characteristic Polynomials

Characteristic polynomial of an $N \times N$ unitary matrix A on the unit circle in the complex plane:

$$
P_{N}(A, \theta)=\operatorname{det}\left(I-A e^{-i \theta}\right) .
$$

Moments of Characteristic Polynomials

Characteristic polynomial of an $N \times N$ unitary matrix A on the unit circle in the complex plane:

$$
P_{N}(A, \theta)=\operatorname{det}\left(I-A e^{-i \theta}\right) .
$$

Consider $A \in \mathrm{CUE}_{N}$; i.e. $A \in U(N)$ endowed with Haar measure.

Moments of Characteristic Polynomials

Characteristic polynomial of an $N \times N$ unitary matrix A on the unit circle in the complex plane:

$$
P_{N}(A, \theta)=\operatorname{det}\left(I-A e^{-i \theta}\right) .
$$

Consider $A \in \mathrm{CUE}_{N}$; i.e. $A \in U(N)$ endowed with Haar measure.
Moments:

$$
M_{N}(\beta)=\mathbb{E}_{A \in U(N)}\left|P_{N}(A, \theta)\right|^{2 \beta}=\mathbb{E}_{A \in U(N)} \exp \left(2 \beta \log \left|P_{N}(A, \theta)\right|\right)
$$

Calculating Moments

Calculating Moments

- Analytical approach: Selberg Integral (Baker \& Forrester, Keating \& Snaith, ...)

Calculating Moments

- Analytical approach: Selberg Integral (Baker \& Forrester, Keating \& Snaith, ...)
- Representation-theoretic approach: symmetric polynomials (Bump \& Gamburd, Dehaye, ...)

Calculating Moments

- Analytical approach: Selberg Integral (Baker \& Forrester, Keating \& Snaith, ...)
- Representation-theoretic approach: symmetric polynomials (Bump \& Gamburd, Dehaye, ...)

For $\beta \in \mathbb{N}$

$$
\begin{aligned}
& M_{N}(\beta)=\prod_{j=1}^{N} \frac{\Gamma(j) \Gamma(j+2 \beta)}{(\Gamma(j+\beta))^{2}}=\prod_{0 \leq i, j \leq \beta-1}\left(1+\frac{N}{i+j+1}\right) \\
& \sim N^{\beta^{2}} \prod_{m=0}^{\beta-1} \frac{m!}{(m+\beta)!}
\end{aligned}
$$

Moments of Moments

Moments of Moments

$$
\operatorname{MoM}_{N}(k, \beta):=\mathbb{E}_{\boldsymbol{A} \in U(N)}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{N}(A, \theta)\right|^{2 \beta} d \theta\right)^{k}
$$

Moments of Moments

$$
\operatorname{MoM}_{N}(k, \beta):=\mathbb{E}_{A \in U(N)}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{N}(A, \theta)\right|^{2 \beta} d \theta\right)^{k}
$$

Motivation:

- Extreme values of $\left|P_{N}(A, \theta)\right|$ (Fyodorov, Hiary \& Keating, Fyodorov \& Keating, ...)

Moments of Moments

$$
\operatorname{MoM}_{N}(k, \beta):=\mathbb{E}_{A \in U(N)}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{N}(A, \theta)\right|^{2 \beta} d \theta\right)^{k}
$$

Motivation:

- Extreme values of $\left|P_{N}(A, \theta)\right|$ (Fyodorov, Hiary \& Keating, Fyodorov \& Keating, ...)
- Value distribution of the random variable $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{N}(A, \theta)\right|^{2 \beta} d \theta$ (see e.g. Fyodorov, Gnutzmann \& Keating)

Moments of Moments

$$
\operatorname{MoM}_{N}(k, \beta):=\mathbb{E}_{A \in U(N)}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{N}(A, \theta)\right|^{2 \beta} d \theta\right)^{k}
$$

Motivation:

- Extreme values of $\left|P_{N}(A, \theta)\right|$ (Fyodorov, Hiary \& Keating, Fyodorov \& Keating, ...)
- Value distribution of the random variable $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{N}(A, \theta)\right|^{2 \beta} d \theta$ (see e.g. Fyodorov, Gnutzmann \& Keating)
- Connection to Gaussian Multiplicative Chaos (see e.g. Nikula, Saksman \& Webb)

Moments of Moments

$$
\operatorname{MoM}_{N}(k, \beta):=\mathbb{E}_{A \in U(N)}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{N}(A, \theta)\right|^{2 \beta} d \theta\right)^{k}
$$

Motivation:

- Extreme values of $\left|P_{N}(A, \theta)\right|$ (Fyodorov, Hiary \& Keating, Fyodorov \& Keating, ...)
- Value distribution of the random variable $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{N}(A, \theta)\right|^{2 \beta} d \theta$ (see e.g. Fyodorov, Gnutzmann \& Keating)
- Connection to Gaussian Multiplicative Chaos (see e.g. Nikula, Saksman \& Webb)
- Applications to modelling the moments of the Riemann zeta-function in short intervals

Moments of Moments

$$
\operatorname{MoM}_{N}(k, \beta):=\mathbb{E}_{A \in U(N)}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{N}(A, \theta)\right|^{2 \beta} d \theta\right)^{k}
$$

Motivation:

- Extreme values of $\left|P_{N}(A, \theta)\right|$ (Fyodorov, Hiary \& Keating, Fyodorov \& Keating, ...)
- Value distribution of the random variable $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{N}(A, \theta)\right|^{2 \beta} d \theta$ (see e.g. Fyodorov, Gnutzmann \& Keating)
- Connection to Gaussian Multiplicative Chaos (see e.g. Nikula, Saksman \& Webb)
- Applications to modelling the moments of the Riemann zeta-function in short intervals
- Applications in Quantum Chaos etc

Conjecture

Conjecture (Fyodorov \& Bouchaud, Fyodorov \& Keating)

When $N \rightarrow \infty$

$$
\operatorname{MoM}_{N}(k, \beta) \sim \begin{cases}\left(\frac{(G(1+\beta))^{2}}{G(1+2 \beta) \Gamma\left(1-\beta^{2}\right)}\right)^{k} \Gamma\left(1-k \beta^{2}\right) N^{k \beta^{2}} & k<1 / \beta^{2} \\ c(k, \beta) N^{k^{2} \beta^{2}+1-k} & k \geq 1 / \beta^{2}\end{cases}
$$

where $G(s)$ is the Barnes G-function and $c(k, \beta)$ is a complicated (unspecified) function of k and β.

Heuristic Justification

Heuristic Justification

For $k \in \mathbb{N}$

$$
\begin{equation*}
\operatorname{MoM}_{N}(k, \beta)=\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta} d \theta_{j} \tag{1}
\end{equation*}
$$

Heuristic Justification

For $k \in \mathbb{N}$

$$
\begin{equation*}
\operatorname{MoM}_{N}(k, \beta)=\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta} d \theta_{j} \tag{1}
\end{equation*}
$$

The integrand in (1) can be evaluated asymptotically when $N \rightarrow \infty$ and the $\theta_{j} s$ are fixed and distinct using the appropriate Fisher-Hartwig formula.

Heuristic Justification

For $k \in \mathbb{N}$

$$
\begin{equation*}
\operatorname{MoM}_{N}(k, \beta)=\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta} d \theta_{j} \tag{1}
\end{equation*}
$$

The integrand in (1) can be evaluated asymptotically when $N \rightarrow \infty$ and the $\theta_{j} \mathrm{~s}$ are fixed and distinct using the appropriate Fisher-Hartwig formula. The resulting integrals w.r.t. the θ_{j} s can be computed when $k<1 / \beta^{2}$ using the Selberg integral.

Heuristic Justification

For $k \in \mathbb{N}$

$$
\begin{equation*}
\operatorname{MoM}_{N}(k, \beta)=\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta} d \theta_{j} \tag{1}
\end{equation*}
$$

The integrand in (1) can be evaluated asymptotically when $N \rightarrow \infty$ and the $\theta_{j} \mathrm{~s}$ are fixed and distinct using the appropriate Fisher-Hartwig formula.
The resulting integrals w.r.t. the θ_{j} s can be computed when $k<1 / \beta^{2}$ using the Selberg integral.
This expression diverges as k approaches $1 / \beta^{2}$ when singularities associated with coalescences of the θ_{j} s become important.

Heuristic Justification

For $k \in \mathbb{N}$

$$
\begin{equation*}
\operatorname{MoM}_{N}(k, \beta)=\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta} d \theta_{j} \tag{1}
\end{equation*}
$$

The integrand in (1) can be evaluated asymptotically when $N \rightarrow \infty$ and the $\theta_{j} \mathrm{~s}$ are fixed and distinct using the appropriate Fisher-Hartwig formula.
The resulting integrals w.r.t. the θ_{j} s can be computed when $k<1 / \beta^{2}$ using the Selberg integral.
This expression diverges as k approaches $1 / \beta^{2}$ when singularities associated with coalescences of the θ_{j} s become important.
Developing a precise asymptotic in the range $k \geq 1 / \beta^{2}$ requires a Fisher-Hartwig formula that is valid uniformly through coalescences.

Previous Results

Previous Results

- $k=1$ - straightforward.

Previous Results

- $k=1$ - straightforward.
- $k=2, \beta \in \mathbb{N}$ - follows from formulae of Keating, Rodgers, Roditty-Gershon \& Rudnick.

Previous Results

- $k=1$ - straightforward.
- $k=2, \beta \in \mathbb{N}$ - follows from formulae of Keating, Rodgers, Roditty-Gershon \& Rudnick.
- When $k=2$ a uniform Fisher-Hartwig asymptotic formula has been established by Claeys and Krasovsky, who used this to prove the powers of N appearing in the conjecture in that case, for all β, and to relate $c(2, \beta)$ to a Painlevé transcendent.

Previous Results

- $k=1$ - straightforward.
- $k=2, \beta \in \mathbb{N}$ - follows from formulae of Keating, Rodgers, Roditty-Gershon \& Rudnick.
- When $k=2$ a uniform Fisher-Hartwig asymptotic formula has been established by Claeys and Krasovsky, who used this to prove the powers of N appearing in the conjecture in that case, for all β, and to relate $c(2, \beta)$ to a Painlevé transcendent.
- Webb proved results consistent with the conjecture when $k \beta^{2}$ is small.

Previous Results

- $k=1$ - straightforward.
- $k=2, \beta \in \mathbb{N}$ - follows from formulae of Keating, Rodgers, Roditty-Gershon \& Rudnick.
- When $k=2$ a uniform Fisher-Hartwig asymptotic formula has been established by Claeys and Krasovsky, who used this to prove the powers of N appearing in the conjecture in that case, for all β, and to relate $c(2, \beta)$ to a Painlevé transcendent.
- Webb proved results consistent with the conjecture when $k \beta^{2}$ is small.
- In the analogous problem in which $\log \left|P_{N}(A, \theta)\right|$ is replaced by a random Fourier series with the same correlation structure, the analogue of conjecture due to Fyodorov and Bouchaud has recently been proved in the regime $k<1 / \beta^{2}$ for all k and β by Remy using ideas from conformal field theory.

Results

Results

Consider the case when $k \in \mathbb{N}$ and $\beta \in \mathbb{N}$.

Results

Consider the case when $k \in \mathbb{N}$ and $\beta \in \mathbb{N}$.
So $k \beta^{2} \geq 1$; i.e. we expect $\operatorname{MoM}_{N}(k, \beta) \sim c(k, \beta) N^{k^{2} \beta^{2}+1-k}$.

Results

Consider the case when $k \in \mathbb{N}$ and $\beta \in \mathbb{N}$.
So $k \beta^{2} \geq 1$; i.e. we expect $\operatorname{MoM}_{N}(k, \beta) \sim c(k, \beta) N^{k^{2} \beta^{2}+1-k}$.
Then we have
Theorem [Bailey-K (2018)]
Let $k, \beta \in \mathbb{N}$. Then $\operatorname{MoM}_{N}(k, \beta)$ is a polynomial in N.

Results

Consider the case when $k \in \mathbb{N}$ and $\beta \in \mathbb{N}$.
So $k \beta^{2} \geq 1$; i.e. we expect $\operatorname{MoM}_{N}(k, \beta) \sim c(k, \beta) N^{k^{2} \beta^{2}+1-k}$.
Then we have
Theorem [Bailey-K (2018)]
Let $k, \beta \in \mathbb{N}$. Then $\operatorname{MoM}_{N}(k, \beta)$ is a polynomial in N.

Theorem [Bailey-K (2018)]

Let $k, \beta \in \mathbb{N}$. Then

$$
\operatorname{MoM}_{N}(k, \beta)=\gamma_{k, \beta} N^{k^{2} \beta^{2}-k+1}+O\left(N^{k^{2} \beta^{2}-k}\right)
$$

where $\gamma_{k, \beta}$ is a polynomial in k and β.

Key idea

Key idea

Recall that for $k \in \mathbb{N}$

$$
\operatorname{MoM}_{N}(k, \beta)=\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta} d \theta_{j}
$$

Key idea

Recall that for $k \in \mathbb{N}$

$$
\operatorname{MoM}_{N}(k, \beta)=\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta} d \theta_{j}
$$

Instead of evaluating $\mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta}$ asymptotically, use instead exact representations.

Key idea

Recall that for $k \in \mathbb{N}$

$$
\operatorname{MoM}_{N}(k, \beta)=\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta} d \theta_{j}
$$

Instead of evaluating $\mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta}$ asymptotically, use instead exact representations. These take the form of

- sums associated with partitions coming from representation theory

Key idea

Recall that for $k \in \mathbb{N}$

$$
\operatorname{MoM}_{N}(k, \beta)=\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta} d \theta_{j}
$$

Instead of evaluating $\mathbb{E} \prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta}$ asymptotically, use instead exact representations. These take the form of

- sums associated with partitions coming from representation theory
- multiple integrals

Outline of Proof of First Theorem

Outline of Proof of First Theorem

Uses Symmetric Function Theory:

Proposition (Bump \& Gamburd)

$$
\mathbb{E}_{A \in U(N)}\left(\prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta}\right)=\frac{s_{\left\langle N^{k \beta}\right\rangle}\left(e^{i \underline{\theta}}\right)}{\prod_{j=1}^{k} e^{i N \beta \theta_{j}}},
$$

where $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ is the Schur polynomial in n variables with respect to the partition λ, where $\left\langle\lambda^{n}\right\rangle=(\overbrace{\lambda, \ldots, \lambda}^{n})$, and

$$
e^{i \theta}=(\overbrace{e^{i \theta_{1}}, \ldots, e^{i \theta_{1}}}^{\beta}, \ldots, \overbrace{e^{i \theta_{k}}, \ldots, e^{i \theta_{k}}}^{\beta}, \overbrace{e^{i \theta_{1}}, \ldots, e^{i \theta_{1}}}^{\beta}, \ldots, \overbrace{e^{i \theta_{k}}, \ldots, e^{i \theta_{k}}}^{\beta}) .
$$

Now

$$
s_{\left\langle N^{k \beta}\right\rangle}\left(e^{i \underline{\theta}}\right)=\sum_{T} e^{i \theta_{1} \tau_{1}} \cdots e^{i \theta_{k} \tau_{k}}
$$

where the sum is over all semistandard Young tableaux (SSYT) of rectangular shape with $k \beta$ rows by N columns, and

$$
\tau_{j}=t_{2(j-1) \beta+1}+\cdots+t_{2 j \beta} \quad j \in\{1, \ldots, k\}
$$

Hence

$$
\begin{aligned}
\operatorname{MoM}_{N}(k, \beta) & =\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \sum_{T} e^{i \theta_{1}\left(\tau_{1}-N \beta\right)} \cdots e^{i \theta_{k}\left(\tau_{k}-N \beta\right)} \prod_{j=1}^{k} d \theta_{j} \\
& =\sum_{\tilde{T}} 1
\end{aligned}
$$

where the sum is now over \tilde{T}, restricted SSYT having $N \beta$ entries from each of the sets

$$
\{2 \beta(j-1)+1, \ldots, 2 j \beta\}, \quad j \in\{1, \ldots, k\} .
$$

We can now use a well-known relation between the number of SSYT of shape λ with entries in $1,2, \ldots, n$ and the Schur polynomial $s_{\lambda}(1, \ldots, 1)$ (if necessary λ is extended with zeros until it has length n), together with the formula

$$
s_{\lambda}(1,1, \ldots, 1)=\prod_{1 \leq i<j \leq n} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i}
$$

which is a polynomial in $\lambda_{i}-\lambda_{j}$.
Since the set of RSSYT is a proper subset of all SSYT, we have that the number of RSSYT of rectangular shape $\lambda=\left\langle N^{k \beta}\right\rangle$ is a polynomial in N of degree less than $k^{2} \beta^{2}$.

Outline of Proof of Second Theorem

Outline of Proof of Second Theorem

Define

$$
I_{k, \beta}\left(\theta_{1}, \ldots, \theta_{k}\right)=\mathbb{E}_{\boldsymbol{A} \in U(N)}\left(\prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta}\right)
$$

so that

$$
\operatorname{MoM}_{N}(k, \beta)=\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} I_{k, \beta}\left(\theta_{1}, \ldots, \theta_{k}\right) d \theta_{1} \cdots d \theta_{k}
$$

Outline of Proof of Second Theorem

Define

$$
I_{k, \beta}\left(\theta_{1}, \ldots, \theta_{k}\right)=\mathbb{E}_{\mathcal{A} \in U(N)}\left(\prod_{j=1}^{k}\left|P_{N}\left(A, \theta_{j}\right)\right|^{2 \beta}\right)
$$

so that

$$
\operatorname{MoM}_{N}(k, \beta)=\frac{1}{(2 \pi)^{k}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} I_{k, \beta}\left(\theta_{1}, \ldots, \theta_{k}\right) d \theta_{1} \cdots d \theta_{k}
$$

We then use

$$
\begin{aligned}
I_{k, \beta}(\underline{\theta})= & \left.\left.\frac{(-1)^{k \beta} e^{-i \beta N \sum_{j=1}^{k} \theta_{j}}}{(2 \pi i)^{2 k \beta}((} k \beta\right)!\right)^{2} \\
& \cdots \oint \\
& \frac{e^{-N\left(z_{k \beta+1}+\cdots+z_{2 k \beta}\right)} \Delta\left(z_{1}, \ldots, z_{2 k \beta}\right)^{2} d z_{1} \cdots d z_{2 k \beta}}{\prod_{m \leq k \beta<n}\left(1-e^{z_{n}-z_{m}}\right) \prod_{m=1}^{2 k \beta} \prod_{n=1}^{k}\left(z_{m}+i \theta_{n}\right)^{2 \beta}} .
\end{aligned}
$$

We deform each of the $2 k \beta$ contours so that any one consists of a sum of k small circles surrounding each of the poles at $-i \theta_{1}, \ldots,-i \theta_{k}$, given by $\Gamma_{-i \theta_{n}}$ for $n \in\{1, \ldots, k\}$, and connecting straight lines whose contributions will cancel. This leads to a sum of $k^{2 k \beta}$ multiple integrals,

$$
I_{k, \beta}(\underline{\theta})=\frac{(-1)^{k \beta} e^{-i \beta N \sum_{j=1}^{k} \theta_{j}}}{(2 \pi i)^{2 k \beta}((k \beta)!)^{2}} \sum_{\varepsilon_{j} \in\{1, \ldots, k\}} J_{k, \beta}\left(\underline{z} ; \underline{\theta} ; \varepsilon_{1}, \ldots, \varepsilon_{2 k \beta}\right) .
$$

where

$$
\begin{aligned}
J_{k, \beta}\left(\underline{z} ; \underline{\theta} ; \varepsilon_{1}, \ldots, \varepsilon_{2 k \beta}\right) & =\int_{\Gamma_{-i \theta_{1}}} \cdots \int_{\Gamma_{-i \theta_{2}} \beta} \\
& \frac{e^{-N\left(z_{k \beta+1}+\cdots+z_{2 k \beta}\right)} \Delta\left(z_{1}, \ldots, z_{2 k \beta}\right)^{2} d z_{1} \cdots d z_{2 k \beta}}{\prod_{m \leq k \beta<n}\left(1-e^{z_{n}-z_{m}}\right) \prod_{m=1}^{2 k \beta} \prod_{n=1}^{k}\left(z_{m}+i \theta_{n}\right)^{2 \beta}} .
\end{aligned}
$$

Next we perform the change of variables,

$$
z_{n}=\frac{v_{n}}{N}-i \alpha_{n}
$$

shifting all the contours to be small circles surrounding the origin, and then compute the resulting integrals asymptotically as $N \rightarrow \infty$. This gives (after a lengthy calculation)

$$
\operatorname{MoM}_{N}(k, \beta) \sim \gamma_{k, \beta} N^{k^{2} \beta^{2}-k+1}
$$

where

$$
\gamma_{k, \beta}=\sum_{I_{1}, \ldots, I_{k-1}=0}^{2 \beta} c_{l}(k, \beta)\left((k-1) \beta-\sum_{j=1}^{k-1} I_{j}\right)^{\left|B_{k, \beta ;!}\right|-k+1} P_{k, \beta}\left(I_{1}, \ldots, I_{k-1}\right),
$$

with

$$
\begin{aligned}
& P_{k, \beta}\left(l_{1}, \ldots, I_{k-1}\right)=\frac{(-1)^{\sum_{\sigma<\tau}\left|S_{\sigma<\tau}^{-}\right|}}{(2 \pi i)^{2 k \beta}((k \beta)!)^{2}} \\
& \times \int_{\Gamma_{0}} \cdots \int_{\Gamma_{0}} \frac{e^{-\sum_{m=k \beta+1}^{2 k \beta} v_{m}} \prod_{\alpha_{m}=\alpha_{n}}^{m<n}\left(v_{n}-v_{m}\right)^{2}}{\prod_{\substack{m \leq k \beta<n \\
\alpha_{n}=\alpha_{m}}}\left(v_{n}-v_{m}\right) \prod_{m=1}^{2 k \beta} v_{m}^{2 \beta}} \\
& \\
& \quad \quad \times \Psi_{k, \beta ;!}\left(\left((k-1) \beta-\sum_{j=1}^{k-1} I_{j}\right) \underline{v}\right) \prod_{m=1}^{2 k \beta} d v_{m} .
\end{aligned}
$$

We have therefore proved the conjecture provided that we can show that $\gamma_{k, \beta} \neq 0$. A (lengthy) calculation shows this to be the case, and that in fact $\gamma_{k, \beta}>0$.
with

$$
\begin{aligned}
& P_{k, \beta}\left(l_{1}, \ldots, I_{k-1}\right)=\frac{(-1)^{\sum_{\sigma<\tau}\left|S_{\sigma<\tau}^{-}\right|}}{(2 \pi i)^{2 k \beta}((k \beta)!)^{2}} \\
& \times \int_{\Gamma_{0}} \cdots \int_{\Gamma_{0}} \frac{e^{-\sum_{m=k \beta+1}^{2 k} v_{m}} \prod_{\substack{\alpha_{m}=\alpha_{n} \\
m<n}}\left(v_{n}-v_{m}\right)^{2}}{\prod_{\substack{m \leq k \beta<n \\
\alpha_{n}=\alpha_{m}}}^{2 k \beta}\left(v_{n}-v_{m}\right) \prod_{m=1}^{2 k \beta} v_{m}^{2 \beta}} \\
& \\
& \quad \quad \times \Psi_{k, \beta ; 1}\left(\left((k-1) \beta-\sum_{j=1}^{k-1} l_{j}\right) \underline{v}\right) \prod_{m=1}^{2 k \beta} d v_{m} .
\end{aligned}
$$

We have therefore proved the conjecture provided that we can show that $\gamma_{k, \beta} \neq 0$. A (lengthy) calculation shows this to be the case, and that in fact $\gamma_{k, \beta}>0$. . Moreover, it follows from the general formula for $\gamma_{k, \beta}$ that it is a polynomial in k and β.

The contour integrals analysed asymptotically above can also be evaluated exactly, using the residue theorem, yielding explicit formulae for the polynomials, For example
$\operatorname{MoM}_{N}(1,1)=N+1$
$\operatorname{MoM}_{N}(2,1)=\frac{1}{6}(N+3)(N+2)(N+1)$
$\operatorname{MoM}_{N}(3,1)=\frac{1}{2520}(N+5)(N+4)(N+3)(N+2)(N+1)\left(N^{2}+6 N+21\right)$
$\operatorname{MoM}_{N}(4,1)=\frac{1}{194594400}(N+7)(N+6)(N+5)(N+4)(N+3)$
$\times(N+2)(N+1)\left(7 N^{6}+168 N^{5}+1804 N^{4}+10944 N^{3}\right.$
$\left.+41893 N^{2}+99624 N+154440\right)$
$\operatorname{MoM}_{N}(1,2)=\frac{1}{12}(N+1)(N+2)^{2}(N+3)$

$$
\begin{aligned}
\operatorname{MoM}_{N}(2,2) & =\frac{1}{163459296000}(N+7)(N+6)(N+5)(N+4)(N+3) \\
& \times(N+2)(N+1)\left(298 N^{8}+9536 N^{7}+134071 N^{6}+1081640 N^{5}\right. \\
& +549437 N^{4}+18102224 N^{3}+38466354 N^{2} \\
& +50225040 N+32432400)
\end{aligned}
$$

etc.

Summary

Summary

- The integer (k) moments of the integer (β) moments are polynomials in N of degree $k^{2} \beta^{2}-k+1$.

Summary

- The integer (k) moments of the integer (β) moments are polynomials in N of degree $k^{2} \beta^{2}-k+1$.
- This fits with the general conjecture.

Summary

- The integer (k) moments of the integer (β) moments are polynomials in N of degree $k^{2} \beta^{2}-k+1$.
- This fits with the general conjecture.
- We recover a formula for the leading coefficient in this case.

Summary

- The integer (k) moments of the integer (β) moments are polynomials in N of degree $k^{2} \beta^{2}-k+1$.
- This fits with the general conjecture.
- We recover a formula for the leading coefficient in this case.
- The proof combines both the representation-theoretic and analytic approaches.

Summary

- The integer (k) moments of the integer (β) moments are polynomials in N of degree $k^{2} \beta^{2}-k+1$.
- This fits with the general conjecture.
- We recover a formula for the leading coefficient in this case.
- The proof combines both the representation-theoretic and analytic approaches.
- The polynomials in question can be computed explicitly.

