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Moments of Characteristic Polynomials

Characteristic polynomial of an N × N unitary matrix A on the unit circle
in the complex plane:

PN(A, θ) = det(I − Ae−iθ).

Consider A ∈ CUEN ; i.e. A ∈ U(N) endowed with Haar measure.

Moments:

MN(β) = EA∈U(N)|PN(A, θ)|2β = EA∈U(N) exp(2β log |PN(A, θ)|)
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Calculating Moments

Analytical approach: Selberg Integral (Baker & Forrester, Keating &
Snaith, . . . )

Representation-theoretic approach: symmetric polynomials (Bump &
Gamburd, Dehaye, . . . )

For β ∈ N

MN(β) =
N∏
j=1

Γ(j)Γ(j + 2β)

(Γ(j + β))2
=

∏
0≤i ,j≤β−1

(
1 +

N

i + j + 1

)

∼ Nβ2
β−1∏
m=0

m!

(m + β)!
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Moments of Moments

MoMN(k, β) := EA∈U(N)

(
1

2π

∫ 2π

0
|PN(A, θ)|2βdθ

)k

Motivation:

Extreme values of |PN(A, θ)| (Fyodorov, Hiary & Keating, Fyodorov
& Keating, . . . )

Value distribution of the random variable 1
2π

∫ 2π
0 |PN(A, θ)|2βdθ (see

e.g. Fyodorov, Gnutzmann & Keating)

Connection to Gaussian Multiplicative Chaos (see e.g. Nikula,
Saksman & Webb)

Applications to modelling the moments of the Riemann zeta-function
in short intervals

Applications in Quantum Chaos etc
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Conjecture

Conjecture (Fyodorov & Bouchaud, Fyodorov & Keating)

When N →∞

MoMN(k , β) ∼


(

(G(1+β))2

G(1+2β)Γ(1−β2)

)k
Γ(1− kβ2)Nkβ2

k < 1/β2

c(k , β)Nk2β2+1−k k ≥ 1/β2

where G (s) is the Barnes G -function and c(k , β) is a complicated
(unspecified) function of k and β.

Jon Keating (Bristol) Moments of Moments October 4, 2018 6 / 20



Heuristic Justification

For k ∈ N

MoMN(k , β) =
1

(2π)k

∫ 2π

0
· · ·
∫ 2π

0
E

k∏
j=1

|PN(A, θj)|2βdθj . (1)

The integrand in (1) can be evaluated asymptotically when N →∞ and
the θjs are fixed and distinct using the appropriate Fisher-Hartwig formula.

The resulting integrals w.r.t. the θjs can be computed when k < 1/β2

using the Selberg integral.

This expression diverges as k approaches 1/β2 when singularities
associated with coalescences of the θjs become important.

Developing a precise asymptotic in the range k ≥ 1/β2 requires a
Fisher-Hartwig formula that is valid uniformly through coalescences.
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Previous Results

k = 1 - straightforward.

k = 2, β ∈ N - follows from formulae of Keating, Rodgers,
Roditty-Gershon & Rudnick.

When k = 2 a uniform Fisher-Hartwig asymptotic formula has been
established by Claeys and Krasovsky, who used this to prove the
powers of N appearing in the conjecture in that case, for all β, and to
relate c(2, β) to a Painlevé transcendent.

Webb proved results consistent with the conjecture when kβ2 is small.

In the analogous problem in which log |PN(A, θ)| is replaced by a
random Fourier series with the same correlation structure, the
analogue of conjecture due to Fyodorov and Bouchaud has recently
been proved in the regime k < 1/β2 for all k and β by Remy using
ideas from conformal field theory.
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Results

Consider the case when k ∈ N and β ∈ N.

So kβ2 ≥ 1; i.e. we expect MoMN(k , β) ∼ c(k , β)Nk2β2+1−k .

Then we have

Theorem [Bailey-K (2018)]

Let k , β ∈ N. Then MoMN(k , β) is a polynomial in N.

Theorem [Bailey-K (2018)]

Let k , β ∈ N. Then

MoMN(k , β) = γk,βN
k2β2−k+1 + O(Nk2β2−k),

where γk,β is a polynomial in k and β.
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Key idea

Recall that for k ∈ N

MoMN(k , β) =
1

(2π)k

∫ 2π

0
· · ·
∫ 2π

0
E

k∏
j=1

|PN(A, θj)|2βdθj .

Instead of evaluating E
∏k

j=1 |PN(A, θj)|2β asymptotically, use instead
exact representations. These take the form of

sums associated with partitions coming from representation theory

multiple integrals
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Outline of Proof of First Theorem

Uses Symmetric Function Theory:

Proposition (Bump & Gamburd)

EA∈U(N)

 k∏
j=1

|PN(A, θj)|2β
 =

s〈Nkβ〉(e
iθ)∏k

j=1 e
iNβθj

,

where sλ(x1, . . . , xn) is the Schur polynomial in n variables with respect to

the partition λ, where 〈λn〉 = (

n︷ ︸︸ ︷
λ, . . . , λ), and

e iθ = (

β︷ ︸︸ ︷
e iθ1 , . . . , e iθ1 , . . . ,

β︷ ︸︸ ︷
e iθk , . . . , e iθk ,

β︷ ︸︸ ︷
e iθ1 , . . . , e iθ1 , . . . ,

β︷ ︸︸ ︷
e iθk , . . . , e iθk ).
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Outline of Proof of First Theorem

Uses Symmetric Function Theory:

Proposition (Bump & Gamburd)

EA∈U(N)

 k∏
j=1

|PN(A, θj)|2β
 =

s〈Nkβ〉(e
iθ)∏k

j=1 e
iNβθj

,

where sλ(x1, . . . , xn) is the Schur polynomial in n variables with respect to

the partition λ, where 〈λn〉 = (

n︷ ︸︸ ︷
λ, . . . , λ), and

e iθ = (

β︷ ︸︸ ︷
e iθ1 , . . . , e iθ1 , . . . ,

β︷ ︸︸ ︷
e iθk , . . . , e iθk ,

β︷ ︸︸ ︷
e iθ1 , . . . , e iθ1 , . . . ,

β︷ ︸︸ ︷
e iθk , . . . , e iθk ).
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Now
s〈Nkβ〉(e

iθ) =
∑
T

e iθ1τ1 · · · e iθkτk ,

where the sum is over all semistandard Young tableaux (SSYT) of
rectangular shape with kβ rows by N columns, and

τj = t2(j−1)β+1 + · · ·+ t2jβ j ∈ {1, . . . , k}.

Hence

MoMN(k , β) =
1

(2π)k

∫ 2π

0
· · ·
∫ 2π

0

∑
T

e iθ1(τ1−Nβ) · · · e iθk (τk−Nβ)
k∏

j=1

dθj

=
∑
T̃

1,

where the sum is now over T̃ , restricted SSYT having Nβ entries from
each of the sets

{2β(j − 1) + 1, . . . , 2jβ}, j ∈ {1, . . . , k}.
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We can now use a well-known relation between the number of SSYT of
shape λ with entries in 1, 2, . . . , n and the Schur polynomial sλ(1, . . . , 1)
(if necessary λ is extended with zeros until it has length n), together with
the formula

sλ(1, 1, . . . , 1) =
∏

1≤i<j≤n

λi − λj + j − i

j − i
,

which is a polynomial in λi − λj .

Since the set of RSSYT is a proper subset of all SSYT, we have that the
number of RSSYT of rectangular shape λ = 〈Nkβ〉 is a polynomial in N of
degree less than k2β2.
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Outline of Proof of Second Theorem

Define

Ik,β(θ1, . . . , θk) = EA∈ U(N)

 k∏
j=1

|PN(A, θj)|2β
 ,

so that

MoMN(k , β) =
1

(2π)k

∫ 2π

0
· · ·
∫ 2π

0
Ik,β(θ1, . . . , θk)dθ1 · · · dθk .

We then use

Ik,β(θ) =
(−1)kβe−iβN

∑k
j=1 θj

(2πi)2kβ((kβ)!)2

∮
· · ·
∮

e−N(zkβ+1+···+z2kβ)∆(z1, . . . , z2kβ)2dz1 · · · dz2kβ∏
m≤kβ<n (1− ezn−zm)

∏2kβ
m=1

∏k
n=1(zm + iθn)2β

.
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We deform each of the 2kβ contours so that any one consists of a sum of
k small circles surrounding each of the poles at −iθ1, . . . ,−iθk , given by
Γ−iθn for n ∈ {1, . . . , k}, and connecting straight lines whose contributions
will cancel. This leads to a sum of k2kβ multiple integrals,

Ik,β(θ) =
(−1)kβe−iβN

∑k
j=1 θj

(2πi)2kβ((kβ)!)2

∑
εj∈{1,...,k}

Jk,β(z ; θ; ε1, . . . , ε2kβ).

where

Jk,β(z ; θ; ε1, . . . , ε2kβ) =

∫
Γ−iθε1

· · ·
∫

Γ−iθε2kβ

e−N(zkβ+1+···+z2kβ)∆(z1, . . . , z2kβ)2dz1 · · · dz2kβ∏
m≤kβ<n (1− ezn−zm)

∏2kβ
m=1

∏k
n=1(zm + iθn)2β

.
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Next we perform the change of variables,

zn =
vn
N
− iαn,

shifting all the contours to be small circles surrounding the origin, and
then compute the resulting integrals asymptotically as N →∞. This gives
(after a lengthy calculation)

MoMN(k , β) ∼ γk,βNk2β2−k+1

where

γk,β =

2β∑
l1,...,lk−1=0

(†)

cl(k, β)((k − 1)β −
k−1∑
j=1

lj)
|Bk,β;l |−k+1Pk,β(l1, . . . , lk−1),
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with

Pk,β(l1, . . . , lk−1) =
(−1)

∑
σ<τ |S

−
σ<τ |

(2πi)2kβ((kβ)!)2

×
∫

Γ0

· · ·
∫

Γ0

e−
∑2kβ

m=kβ+1 vm
∏

m<n
αm=αn

(vn − vm)2∏
m≤kβ<n
αn=αm

(vn − vm)
∏2kβ

m=1 v
2β
m

×Ψk,β;l(((k − 1)β −
k−1∑
j=1

lj)v)

2kβ∏
m=1

dvm.

We have therefore proved the conjecture provided that we can show that
γk,β 6= 0. A (lengthy) calculation shows this to be the case, and that in
fact γk,β > 0.

. Moreover, it follows from the general formula for γk,β that
it is a polynomial in k and β.

Jon Keating (Bristol) Moments of Moments October 4, 2018 17 / 20



with

Pk,β(l1, . . . , lk−1) =
(−1)

∑
σ<τ |S

−
σ<τ |

(2πi)2kβ((kβ)!)2

×
∫

Γ0

· · ·
∫

Γ0

e−
∑2kβ

m=kβ+1 vm
∏

m<n
αm=αn

(vn − vm)2∏
m≤kβ<n
αn=αm

(vn − vm)
∏2kβ

m=1 v
2β
m

×Ψk,β;l(((k − 1)β −
k−1∑
j=1

lj)v)

2kβ∏
m=1

dvm.

We have therefore proved the conjecture provided that we can show that
γk,β 6= 0. A (lengthy) calculation shows this to be the case, and that in
fact γk,β > 0. . Moreover, it follows from the general formula for γk,β that
it is a polynomial in k and β.

Jon Keating (Bristol) Moments of Moments October 4, 2018 17 / 20



The contour integrals analysed asymptotically above can also be evaluated
exactly, using the residue theorem, yielding explicit formulae for the
polynomials, For example

MoMN(1, 1) = N + 1

MoMN(2, 1) =
1

6
(N + 3)(N + 2)(N + 1)

MoMN(3, 1) =
1

2520
(N + 5)(N + 4)(N + 3)(N + 2)(N + 1)(N2 + 6N + 21)

MoMN(4, 1) =
1

194594400
(N + 7)(N + 6)(N + 5)(N + 4)(N + 3)

× (N + 2)(N + 1)(7N6 + 168N5 + 1804N4 + 10944N3

+ 41893N2 + 99624N + 154440)

MoMN(1, 2) =
1

12
(N + 1)(N + 2)2(N + 3)
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MoMN(2, 2) =
1

163459296000
(N + 7)(N + 6)(N + 5)(N + 4)(N + 3)

× (N + 2)(N + 1)(298N8 + 9536N7 + 134071N6 + 1081640N5

+ 549437N4 + 18102224N3 + 38466354N2

+ 50225040N + 32432400)

etc.
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Summary

The integer (k) moments of the integer (β) moments are polynomials
in N of degree k2β2 − k + 1.

This fits with the general conjecture.

We recover a formula for the leading coefficient in this case.

The proof combines both the representation-theoretic and analytic
approaches.

The polynomials in question can be computed explicitly.
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