

Random Matrices, Integrability and Complex Systems , Yad Hashmona, Israel 4 October 2018

NON-ERGODIC EXTENDED PHASE IN GENERALIZED ROSENZWEIG-PORTER RMT

V.E.Kravtsov ICTP, Trieste NJP 17, 12202, (2015), arXiv: 1805.06472, arXiv: 1810.01492

Collaboration:

Mohsen Amini, (Isfahan Uni., ICTP) Soumya Bera (IIT, Bombay) Giuseppe DeTomasi (MPI, Dresden) Ivan Khaymovich, (MPI, Dresden) Pavel Nosov (St. Petersburg Uni)

Rosenzweig-Porter RMT

$$\left\langle H_{nm}\right\rangle = 0$$

 $\sigma = \frac{\lambda^2}{N^{\gamma}} << 1$

Special diagonal: Rosenzweig-Porter (1960) ensemble NxN matrix, uncorrelated random entries

Simplest non-invariant RMT

Localization/delocalization sufficient conditions (for uncorrelated entries)

Ν

Convergence of Anderson's locator expansion

$$\frac{1}{N}\sum_{n,m=1}^{N} \langle |H_{nm}| \rangle < \infty, \Rightarrow \text{ localized } \langle |H_{nm}| \rangle \square \delta \sim N^{-1}$$

$$\frac{1}{N}\sum_{n,m=1}^{N} \langle |H_{nm}|^{2} \rangle = \infty \Rightarrow \text{ semicircle, } \Rightarrow \text{ ergodic extended } \text{Mott's criterion V>W}$$

$$\frac{1}{V} = \sqrt{2S}$$

$$\frac{\langle (H_{mn})^{2} \rangle = W^{2} = 1}{\langle |H_{n\neq m}|^{2} \rangle = \frac{\lambda^{2}}{N^{\gamma}}} \qquad \rho_{0} = \frac{\sqrt{2S - E^{2}}}{\pi S}, \gamma < 1$$

$$S = \frac{1}{N}\sum_{n,m=1}^{N} \langle |H_{nm}|^{2} \rangle = \lambda^{2} N^{1-\gamma}$$

$$\frac{1}{N} = \frac{1}{N}\sum_{n,m=1}^{N} \langle |H_{nm}|^{2} \rangle = \lambda^{2} N^{1-\gamma}$$

$$\frac{1}{N} = \frac{1}{N}\sum_{n,m=1}^{N} \langle |H_{nm}|^{2} \rangle = \lambda^{2} N^{1-\gamma}$$

Ergodic transition

V.E.K., I.M. Khaymvich, E. Cuevas, M. Amini, New J. Phys., v.17, 12202 (2015)

Crash course on multifractality

Multifractality spectrum $f(\alpha)$

Existence of multifractal phase and ergodic transition in RP RMT is suggested (with the physical standard of rigor) in:

V.E.K., I.M. Khaymvich, E. Cuevas, M. Amini, New J. Phys., v.17, 12202 (2015)

and rigorously proven (on the level of a math theorem):

Per von Soosten and S. Warzel, Electron J. Probab. 23, 1 (2018).

arXiv: 1709.10313 [math-ph)]

Ansatz for random wave functions of Rosenzweig-Porter RMT

$$|\psi_{n}(i)|^{2} = \frac{|H_{ni}|^{2}}{(E_{n} - E_{i})^{2} + \Gamma(N)^{2}}$$

 $\delta(N) = (\rho_0 N)^{-1}$

$$\Gamma(N) = \begin{cases} \delta(N)N^{D} \text{ extended states} \\ \sqrt{\langle |H_{n\neq m}|^{2} \rangle}, \text{ localized states} \end{cases}$$

$$\rho_{0} = p(E) \sim 1, \ (\gamma > 1)$$
Semi

$$\rho_{0} = \frac{\sqrt{2S - E^{2}}}{\pi S}, \ \gamma < 1$$

$$S = \sum_{n,m=1}^{N} \langle |H_{nm}|^{2} \rangle = \lambda^{2} N^{1-\gamma}$$

$$P_{0} = \begin{cases} \frac{1-\gamma}{N^{2}}, \ (\gamma < 1, EE) \\ N^{-(\gamma-1)}, \ (1 < \gamma < 2, NEE) \\ N^{-\gamma/2}, \ (\gamma > 2, L) \end{cases}$$

$$\Gamma \to 0, \ \Gamma/\delta \to 0$$

$$\Gamma \to 0, \ \Gamma/\delta \to 0$$

Spectral form-factor and the 'hybrid' level statistics

$$S(u) = 1 + e^{-2\pi\Lambda^{2}u}e^{-\Lambda^{2}u^{2}N^{\gamma-2}} \left[\frac{2I_{1}(\kappa u^{3/2})}{\kappa u^{3/2}} - \frac{1}{4\pi}\kappa u^{5/2}N^{\gamma-2}\int_{0}^{\infty} \frac{x \, dx}{\sqrt{x+1}} I_{1}(\kappa u^{3/2}\sqrt{x+1}) e^{-x \, u^{2}\Lambda^{2}N^{\gamma-2}} \right]$$

$$\kappa = \sqrt{8\pi N^{\gamma-2}\Lambda^{2}} \text{ and } \Lambda = \lambda p(0)$$

$$I_{0} = \frac{1}{\sqrt{9}} \frac{\sqrt{9}}{\sqrt{9}} I_{1} = \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} I_{1} = \frac{1}{\sqrt{9$$

How to detect the new scale Γ ?

$$K(\omega) = \sum_{\alpha,\beta} |\psi_{\alpha}(i)|^{2} |\psi_{\beta}(i)|^{2} \delta(\omega - E_{\alpha} + E_{\beta})$$

More informative Fourier transform: Survival Probability

Survival Probability in MF phase

Survival probability in NEE phase

What about correlated hopping Exactly terms?

Yuzbashyan-Shastry (YS) model

$$\Psi_E(i) = c \frac{g_i}{E - \varepsilon_i}$$

$$H_{n\neq m} = g_n g_m^*$$

 $\sum_{i=0}^{N-1} \frac{g_i^2}{E - \varepsilon_i} = -\frac{1}{2}$

 $f(\alpha)$

$$g_n = \frac{1}{N^{\nu/2}}$$

$$|\psi|^2 \sim N^{-\alpha}$$
$$M \sim N^{f(\alpha)}$$

 $\left\|\psi\right\|_{tvp}^2 \sim N^{-\max\{\gamma,2\}}$

R. Modak, S. Mukerjee, E. A. Yuzbashyan, and B. S. Shastry, New J. Phys. 18, 033010 (2016).

H. K. Owusu, K. Wagh, and E. A. Yuzbashyan, J. Phys. A: Math. Theor. 42, 035206 (2009).

A. Ossipov, J. Phys. A 46, 105001 (2013).

states are

localized

 $(\gamma > 2)$ or

critically

localized

(γ<=2)

G. L. Celardo, R. Kaiser, and F. Borgonovi, Phys. Rev. B 94, 144206 (2016).

X. Deng, V. E. Kravtsov, G. V. Shlyapnikov, and L. Santos, Phys. Rev. Lett. **120**, 110602 (2018).

Why no delocalized states?

Convergence of Anderson's locator expansion

$$\langle |H_{nm}| \rangle < \infty, \Rightarrow \text{localized} \langle |H_{nm}|$$

 $\left|\frac{1}{N}\sum_{n=1}^{N}\right|$

Not only YS!

No delocalized states also for deterministic power-law hopping!

$$H_{nm} = J |n-m|^{-a}$$

Even for a < 1

P. Nosov, I.M.Khaymovich and V.E.K.

arXiv: 1810.01492

X. Deng, V.E.K. G. Shlyapnikov, L. Santos, Phy. Rev. Lett. **120**, 110602 (2018) Translation-invariant RP model: correlation along the (non-principle)diagonal

$$H_{n\neq m} = H_{n-m}$$

$$\left\langle H_{n-m} \right\rangle = 0,$$

 $\left\langle |H_{n-m}|^2 \right\rangle = N^{-\gamma}$

Correlated along the diagonal, Uncorrelated with zero mean between the diagonals

P. Nosov, I.M.Khaymovich and V.E.K.

arXiv: 1810.01492

 Lack of correlations between diagonals destroy localization in the coordinate space for γ<2.

Localization and multifractality in the momentum space

$$\gamma_p = 2 - \gamma$$

Poisson and 'hybrid' level statistics in the delocalized phase

Conclusion

- Two extended phases and ergodic transition in RP RMT
- Ansatz for random wave functions of RP RMT and survival probability
- 'Hybrid' level statistics
- Localization in YS exactly solvable model: RP with fully correlated hopping

Translation-invariant TI-RP: localization and multifractality in the momentum space; Poisson and 'hybrid' level statistics in delocalized phase

Survival probability in the localized phase of RP

Survival probability in EE phase

Oscillations in ergodic extended phase due to edge of DoS (semi-circle or finite fraction of states f)