Universal random matrix kernels from quantum mechanical hydrogen atom problem

Maciej A. Nowak

Mark Kac Complex Systems Research Center,
Marian Smoluchowski Institute of Physics
Jagiellonian University

Random Matrices, Integrability and Complex Systems Research Workshop of the Israeli Science Foundation

Yad Hashmona, Judean Hills, Israel
October 4th, 2018

Acknowledgements

Wojciech Tarnowski (JU) [arXiv: 1810.xxxxx] Jacek Grela (LPTMS, CNRS, U. Paris-Sud) Jeremi Ochab (JU)
Piotr Warchoł (JU)

Tribute

- John Wishart (*1898, Montrose, $\dagger 1956$, Acapulco) Biometrika 20A (1928) 32
- Erwin Schroedinger ($* 1887$, Vienna, $\dagger 1961$, Vienna) Ann. Physik 79 (1926) 361
- Salomon Bochner (*1899, Kraków, †1982, Houston) Math. Z. 29 (1929) 730.
- We consider x_{i} from iid standard Gaussian distribution and we form $y=\sum_{i=1}^{T} x_{i}^{2}$. Pdf of such distribution reads $p(y) \sim y^{T / 2-1} e^{-y / 2}$
Crucial distribution when analyzing variance, testing hypothesis etc..
- We consider vectors \vec{x}_{i} from standard real/complex Gaussian distributions and we form matrix X

$$
X=\left(\begin{array}{ccc}
x_{11} & \ldots & x_{1 T} \\
\vdots & \vdots & \vdots \\
x_{N 1} & \ldots & x_{N T}
\end{array}\right)
$$

Then we form correlation matrix $M=\frac{1}{T} X X^{\dagger}$.
Wishart distribution (for the complex case and $N \leqslant T$) reads $P(M) \sim \operatorname{det} M^{T-N} e^{-T \operatorname{tr} M}$

Switching to spectra

- $P_{N}\left(\lambda_{1}, \ldots, \lambda_{N}\right) \sim \Pi \lambda_{i}^{T-N} e^{-T \sum \lambda_{i}} \Delta(\Lambda)^{2}$
- Slater determinant

$$
P_{N}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\frac{1}{N!}\left[\operatorname{det} \psi_{j-1}^{(N)}\left(\lambda^{k}\right)| |_{j, k=1}^{N}\right]^{2}=\frac{1}{N!}\left[\operatorname{det} K_{N}\left(\lambda_{i}, \lambda_{j}\right)\right]
$$

with the kernel

$$
K_{N}(\lambda, \mu)=\sum_{l=0}^{N-1} \psi_{l}^{(N)}(\lambda) \psi_{l}^{(N)}(\mu)
$$

Here $\psi_{l}^{(N)}(\lambda)=e^{-T \lambda / 2} \lambda^{(T-N) / 2} P_{l}^{(N)}(\lambda)$ is a wave function

- Quantum Mechanics I

Radial Schroedinger eq. for hydrogen atom (in units $2 \mu=1$).
Completely integrable system for any N, T !

My favorite citation...

The same equations have the same solutions!

- $\hbar \sim \frac{1}{T} \rightarrow 0$
- Bohr-Sommerfeld formula $\oint p(r) d r=\left(n+\frac{1}{2}\right) 2 \pi \hbar$
- Semi-classically, $p^{2}-\frac{1}{r}+\frac{I(l+1)}{r^{2}}=E$.

In the limit $N, T \rightarrow \infty, N / T=c$ fixed, where N, T are related to n, l, Bohr-Sommerfeld formula is Marchenko-Pastur formula for Wishart ensemble (new result?)
-

$$
\int_{r_{-}}^{r_{+}} \rho(x) d x=1 \quad \text { with } \quad \rho(x)=\frac{1}{2 \pi c x} \sqrt{\left(r_{+}-x\right)\left(x-r_{-}\right)}
$$

where $r_{ \pm}=(1 \pm \sqrt{c})^{2}$ are classical turning points.

- Note that same reasoning converts the harmonic oscillator ellipse $E=p^{2}+\frac{x^{2}}{4}$ into Wigner semi-ellipse $\rho(x)=\frac{1}{2 \pi} \sqrt{4-x^{2}}$ [T. Tao].

Quantum microscopy

Quantum microscopy, cont.

- "Bulk"

$$
n_{\text {bulk }} \sim N \int_{x_{0}-s / 2}^{x_{0}+s / 2} \rho(x) d x \sim N s \rho\left(x_{0}\right)
$$

so we have scaling $s \sim 1 /\left(N \rho\left(x_{0}\right)\right)$

- "Soft edge"

$$
n_{\text {soft }} \sim N \int_{-s / 2}^{s / 2} \sqrt{x} d x \sim N s^{3 / 2}
$$

so we have scaling $s \sim 1 / N^{2 / 3}$.

- "Hard edge"

$$
n_{\text {hard }} \sim N \int_{0}^{s} \frac{d x}{\sqrt{x}} \sim N \sqrt{s}
$$

so we have scaling $s \sim 1 / N^{2}$.

Spectral deformation of the QM projection operator

- Quantum mechanics II $\hat{K}_{N}=\sum_{i}^{N}\left|\psi_{i}><\psi_{i}\right|$ is a projection operator $\left(\hat{K}_{N}^{2}=\hat{K}_{N}\right)$
- Spectral bound $\hat{H}_{N} \leqslant E_{N}$, with $E_{N}=-1 / 4 N^{2}$, combined with pertinent microscopic scaling, shows the deformation of the domain of the operator \hat{H}. Deciphering this deformation yields a microscopic form of the kernel K for each pertinent scaling, respectively.

Bulk

Bound $\hat{H}_{N} \leqslant E_{N}$, or explicitly

$$
\frac{d^{2}}{d x^{2}}+\frac{1}{x} \frac{d}{d x}+\frac{1+2 k+\nu}{2 x}-\frac{\nu^{2}}{4 x^{2}} \geqslant \frac{1}{4}
$$

with the scaling $\frac{x}{T}=x_{0}+\frac{s}{N \rho\left(x_{0}\right)}$, converts in the large N limit ($k \sim N$, $\nu=T-N$) onto $\frac{d^{2}}{d s^{2}} \geqslant \frac{\left(x_{0}-r_{+}\right)\left(x_{0}-r_{-}\right)}{4 c^{2} x^{2} \rho^{2}\left(x_{0}\right)}$, therefore $-\frac{d^{2}}{d s^{2}} \leqslant \pi^{2}$

- QM suggests the use of plane waves, then $(2 \pi t)^{2} \leqslant \pi^{2}$, so the deformation is the limitation of all possible momenta t to the strip $[-1 / 2,1 / 2]$.
- Identity operator $\mathbf{1}_{t t^{\prime}}=\delta\left(t-t^{\prime}\right)$ (completeness)
$F\left(t^{\prime}\right)=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} e^{2 \pi i t^{\prime} s} e^{-2 \pi i t s} d s\right] F(t) d t$ gets deformed to projecion operator

$$
\mathbf{P}\left[F\left(t^{\prime}\right)\right]=\int_{-\infty}^{\infty}\left[\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2 \pi i t^{\prime} s} e^{-2 \pi i t s} d s\right] F(t) d t
$$

- Hence the universal Dyson kernel

$$
\delta\left(t-t^{\prime}\right) \rightarrow K_{\text {sine }}\left(t, t^{\prime}\right)=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2 \pi i t^{\prime} s} e^{-2 \pi i t s} d s=\frac{\sin \left(\pi\left(t^{\prime}-t\right)\right)}{\pi\left(t^{\prime}-t\right)}
$$

Soft edge

We repeat similar reasoning for soft edge.

- Deformation in the case of soft edge converts the Schroedinger eq. in the large N limit onto the bound $-\frac{d^{2}}{d s^{2}}+s \leqslant 0$ (triangular potential). Role of Fourier transforms is played by the pair of Airy transforms

$$
F(t)=A[f(z)]=\int_{-\infty}^{\infty} A i(t-z) f(z) d z
$$

and its inverse

$$
f(z)=\int_{-\infty}^{\infty} F(t) A i(t-z) d t
$$

- This transform leads to the spectral condition

$$
t \leqslant 0
$$

Soft edge cont.

- Combining both Airy transforms we obtain the identity operator

$$
F\left(t^{\prime}\right)=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} A i\left(t^{\prime}-z\right) A i(t-z) d z\right] F(t) d t
$$

- The deformation condition projects the above identity operator onto

$$
\mathbf{P}\left[F\left(t^{\prime}\right)\right]=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{0} A i\left(t^{\prime}-z\right) A i(t-z) d z\right] F(t) d t
$$

so the kernel, understood as a projection, reads

$$
K_{\text {Airy }}\left(t, t^{\prime}\right)=\int_{-\infty}^{0} A i\left(t^{\prime}-z\right) A i(t-z) d z=\frac{A i\left(t^{\prime}\right) A i^{\prime}(t)-A i^{\prime}\left(t^{\prime}\right) A i(t)}{t^{\prime}-t}
$$

where on the r.h.s. we presented the more familiar form of the Airy kernel based on relation

$$
\frac{d}{d z}\left[\frac{A i\left(t^{\prime}-z\right) A i^{\prime}(t-z)-A i^{\prime}\left(t^{\prime}-z\right) A i(t-z)}{t^{\prime}-t}\right]=A i\left(t^{\prime}-z\right) A i(t-z)
$$

Hard edge

We repeat similar reasoning for the hard edge.

- Deformation in the case of hard edge yields the bound

$$
\Delta_{\nu} \equiv-\frac{d^{2}}{d z^{2}}-\frac{1}{z} \frac{d}{d z}-\frac{\nu^{2}}{z^{2}} \leqslant 1
$$

where on the l.h.s. we recognize Bessel operator, appearing in quantum mechanical problems with polar angle symmetry and $\nu=T-N \sim O(1)$.

- To see the deformation caused by hard edge scaling in the above equation we define Hankel transform

$$
F_{\nu}(t)=H_{\nu}[f(z)]=\int_{0}^{\infty} z f(z) J_{\nu}(z) d z
$$

and the inverse Hankel transform is given as

$$
f(z)=\int_{0}^{\infty} t F_{\nu}(t) J_{\nu}(t z)
$$

Since the Hankel transform of the Bessel operator reads $H_{\nu}\left[\Delta_{\nu} f(z)\right]=t^{2} F_{\nu}(t)$, the spectral deformation in dual variable t (note that t cannot be negative) reads simply $0 \leqslant t \leqslant 1$

Hard edge - cont.

- Combining both Hankel transforms we obtain (modulo change of the variables) the identity operator

$$
F_{\nu}\left(t^{\prime}\right)=\int_{0}^{\infty}\left[\int_{0}^{\infty} z t J_{\nu}\left(t^{\prime} z\right) J_{\nu}(t z) d z\right] F_{\nu}(t) d t
$$

The deformation condition projects the above identity operator onto

$$
\mathbf{P}\left[F_{\nu}\left(t^{\prime}\right)\right]=\int_{0}^{\infty}\left[\int_{0}^{1} z t J_{\nu}\left(t^{\prime} z\right) J_{\nu}(t z) d z\right] F_{\nu}(t) d t
$$

so the kernel, understood as a projection, reads

$$
K_{\text {Bessel }}\left(t, t^{\prime}\right)=\int_{0}^{1} z t J_{\nu}\left(t^{\prime} z\right) J_{\nu}(t z) d z
$$

- Using Lommel integral we arrive at the more familiar form

$$
K_{\text {Bessel }}(x, y)=\frac{J_{\nu}(\sqrt{x}) J_{\nu}^{\prime}(\sqrt{y}) \sqrt{y}-\sqrt{x} J_{\nu}^{\prime}(\sqrt{x}) J_{\nu}(\sqrt{y})}{2(x-y)}
$$

No-go theorem

- Bochner theorem

If an infinite sequence of polynomials $P_{n}(x)$ satisfies a second order eigenvalue eq.

$$
p(x) P_{n}^{\prime \prime}+q(x) P_{n}^{\prime}+r(x) P_{n}=\lambda_{n} P_{n}
$$

then $p(x), q(x), r(x)$ must be polynomials of degree 2,1, and 0 , respectively

- If additionally polynomials are orthogonal, the only solutions are polynomials of Jacobi, Laguerre or Hermite
- This leads to universal limit of determinantal processes for Sturm-Louiville operators [Bornemann, 2016], i.e. for the GUE, LUE and JUE (a.k.a. MANOVA) - yielding sine, Airy and Bessel $\beta=2$ universality.

How to go out from the No-go theorem

- Consider higher order equation comparing to Sturm-Liouville (S-L) problem, e.g. third order diff. equation.
- This leads to nonhermitian operator \mathcal{H}.
- Eigenvalue problem is more complicated

$$
\mathcal{H}\left|R_{n}>=\lambda_{n}\right| R_{n}>\quad<L_{n}\left|\mathcal{H}^{\dagger}=\lambda_{n}<L_{n}\right|
$$

where $\mid R_{n}>$ and $\mid L_{n}>$ are right and left eigenvectors to λ_{n}.

- Quantum mechanics III (nonhermitian):

Right and left eigenvectors are bi-orthogonal, i.e. despite $<L_{n} \mid L_{m}>\neq 0$ and $<R_{n}\left|R_{m}>\neq 0,<L_{n}\right| R_{m}>=\delta_{n m}$

- "Kernel" $\hat{K}_{N}=\sum_{i=1}^{N}\left|R_{i}><L_{i}\right|$ is a projection operator due to bi-orthogonality, $\hat{K}_{N}^{2}=\hat{K}_{N}$. Since we have also the closure relation ($\sum_{i=1}^{\infty}\left|R_{i}><L_{i}\right|=1$), we may try to repeat the "deformation" trick $\mathbf{1} \rightarrow \hat{\mathbf{K}}$ even in the cases beyond the S-L.

Example - Product of M Wishart matrices

[Akemann, Ipsen, Kieburg, 2014]

$$
\mathcal{H}=z \frac{d}{d z}-\frac{d}{d z} \prod_{j=1}^{M}\left(z \frac{d}{d z}+\nu_{j}\right)
$$

"Schroedinger eq." reads $\mathcal{H}\left|R_{k}>=k\right| R_{k}>$, and explicitly

$$
<x \left\lvert\, R_{k}>=G_{1, M+1}^{1,0}\left(\left.\begin{array}{c}
k+1 \\
0,-\nu_{M}, \ldots,-\nu_{1}
\end{array} \right\rvert\, x\right)\right.
$$

v_{i} measure rectangularity of Wisharts, $G \ldots-$ Meijer function.
From $<f\left|\mathcal{H} g>=<\mathcal{H}^{\dagger} f\right| g>$ we read out

$$
\mathcal{H}^{\dagger}=-z \frac{d}{d z}-1+(-1)^{M} \frac{d}{d z} \prod_{j=1}^{M}\left(z \frac{d}{d z}-\nu_{j}\right)
$$

with explicit solution for $<L_{k}\left|\mathcal{H}^{\dagger}=k<L_{k}\right|$

$$
<L_{k} \left\lvert\, x>=G_{1, M+1}^{M, 1}\left(\left.\begin{array}{c}
-k \\
\nu_{M}, \ldots, \nu_{1}, 0
\end{array} \right\rvert\, x\right)\right.
$$

- "Halloween hat" singularity for the product of M Wisharts $\rho(r) \sim r^{-M /(M+1)}$ dictates microscopic scaling at the origin i.e. $z=N s$.
- The Sch. equation leads therefore to the deformation (bound)

$$
\mathcal{H}(z) \rightarrow \Delta_{\vec{\nu}}^{(M+1)}(s) \equiv-\frac{d}{d s} \prod_{j=1}^{M}\left(s \frac{d}{d s}+\nu_{j}\right) \leqslant 1
$$

- To unravel this bound we use the pair of Narain transforms.

$$
g(s)=\int_{0}^{\infty} k(s, t) f(t) d t, \quad f(t)=\int_{0}^{\infty} h(t, y) g(y) d y
$$

where the integral kernels read

$$
\begin{aligned}
& k(s, t)=2 \gamma x^{\gamma-1 / 2} G_{p+q, m+n}^{m, p}\left(\left.\begin{array}{l}
a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{q} \\
c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n}
\end{array} \right\rvert\,(s t)^{2 \gamma}\right) \\
& h(y, t)=2 \gamma x^{\gamma-1 / 2} G_{p+q, m+n}^{n, q}\left(\left.\begin{array}{l}
-b_{1}, \ldots,-b_{q},-a_{1}, \ldots,-a_{p} \\
-d_{1}, \ldots,-d_{n},-c_{1}, \ldots,-c_{m}
\end{array} \right\rvert\,(y t)^{2 \gamma}\right)
\end{aligned}
$$

Universal hard kernel for the product of Wisharts

- In our case, kernels read

$$
k(s, y)=\sigma_{0, M+1}^{M, 0}\left(\nu_{1}, \ldots, \nu_{M}, 0 \mid s y\right), \quad h(y, t)=\sigma_{0, M+1}^{1,0}\left(0,-\nu_{1}, \ldots,-\nu_{M} \mid t y\right) .
$$

- in dual to s variable t, the bound $\Delta_{\vec{\nu}}^{(M+1)}(s) \leqslant 1$ reads simply $t \leqslant 1$
- Identity operator $g(x)=\int_{0}^{\infty}\left[\int_{0}^{\infty} k(x, t) h(t, y) d t\right] g(y) d y$ gets deformed onto

$$
\mathbf{P}[g(x)]=\int_{0}^{\infty}\left[\int_{0}^{1} k(x, t) h(t, y) d t\right] g(y) d y
$$

- Hence the kernel reads explicitly

$$
K_{M}^{\text {hard }}(x, y)=\int_{0}^{1} G_{0, M+1}^{1,0}\left(0,-\nu_{1}, \ldots,-\nu_{M} \mid s x\right) G_{0, M+1}^{M, 0}\left(\nu_{1}, \ldots, \nu_{M}, 0 \mid s y\right) d s .
$$

in agreement with [Kuijlaars, Zhang, 2014].

- For $M=1, G_{0,2}^{1,0}\left(\left.\begin{array}{c}- \\ \nu, 0\end{array} \right\rvert\, x\right)=x^{\nu / 2} J_{\nu}(2 \sqrt{x})$, so one recovers the Bessel Kernel. Narain transform generalizes Hankel transform.

Example 2 - Muttalib-Borodin Ensemble

- $P(\lambda) \sim \Delta(\lambda) \Delta\left(\lambda^{\theta}\right) \prod_{k=1}^{N} \lambda_{k}^{\alpha} e^{-\lambda_{k}}$ where $\alpha \geqslant-1$ and $\theta \geqslant 0$.
- $\theta=2$ - 3rd order non Hermitian diff. equation [Spencer, Fano (1951)] (paper on X-rays through matter (sic!))
- General θ : Duality between product of M Wisharts and $M-B$:

$$
\begin{align*}
M & \leftrightarrow \theta \tag{1}\\
\nu_{i}=T_{i}-N_{i} & \leftrightarrow \quad \nu_{i}=\frac{i}{M}-1, \quad \text { where } i=1, \ldots, M
\end{align*}
$$

- same kernel as Wishart product kernel, by consequitive operations
(1) Microscopic scaling $x=u N^{-\frac{1}{\theta}}$
(2) Large N limit
(3) Change of the variables $u=\theta s^{\frac{1}{\theta}}$ in agreement with [Kuijlaars, Stivigny, 2014]
- Analogy to Borodin-like duality similar to relation between Laguerre-generalized Hermite
- Insights from QM offer a pedagogical way to understand Borodin-Olshanski method and provide an easy alternative to advanced tools alike Plancherel-Rotach limit of orthogonal polynomials or asymptotics of Riemann-Hilbert problem
- (?) Possibility of systematic extensions of S-L problem (standard approach is based either on replacement of differential operators by difference operators (Askey-Wilson scheme) or higher order OPS (Bochner-Krall))
- (?) QM insights for the general $\beta \neq 2$?
- (?) Generalization for non-hermitian systems?

RMT faces Dataism [S. Lohr, 2015; Y. N. Harari, 2016]

maciej.a.nowak@uj.edu.pl

RANDOM MATRIX THEORY:
APPLICATIONS IN THE INFORMATION ERA
CONFERENCE
APril 29 - May 32019 Kraków, Poland

