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x2 distribution and Wishart ensemble

@ We consider x; from iid standard Gaussian distribution and we
form y = 3> 1 x?. Pdf of such distribution reads
ply) ~yT/2 e/
Crucial distribution when analyzing variance, testing
hypothesis etc..

@ We consider vectors X; from standard real/complex Gaussian
distributions and we form matrix X

X11 ... X1T

XN1 .-« XNT

Then we form correlation matrix M = %XXT.
Wishart distribution (for the complex case and N < T) reads
P(M) ~ det MT—Ne=TtrM
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Switching to spectra

o Py(AL, s An) ~ TN “Nem TN A(N)?
o Slater determinant

Pu(A, o M) = [dew”)(Ak)wk:lf:%[detKN(A,-,w

NI

with the kernel

v(A 1) = Zw, WM (w)

Here (") (\) = e~ TA2X(T-M/2p(N)(}) is a wave function
@ Quantum Mechanics |

Radial Schroedinger eq. for hydrogen atom (in units 2 = 1).
Completely integrable system for any N, T!
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My favorite citation...
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"OIld" quantum theory (1914-1917)

o h~2—0

o Bohr-Sommerfeld formula § p(r)dr = (n+ )27k

o Semi-classically, p> — 1 + ’(’%1) — E.

In the limit N, T — oo, N/T = c fixed, where N, T are
related to n, /, Bohr-Sommerfeld formula is Marchenko-Pastur
formula for Wishart ensemble (new result?)

/rr+ p(x)dx =1 with p(x) = ! \/(r+ —x)(x—r-)

2mwex

where ri = (14 ,/c)? are classical turning points.

@ Note that same reasoning converts the harmonic oscillator
. 2. . -
ellipse E = p® + % into Wigner semi-ellipse

p(x) = £=v4 — x2 [T. Tao].



Quantum microscopy
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Quantum microscopy, cont.

e "Bulk”

X0+S/2
Npulk ~ N/ p(x)dx ~ Nsp(xo)
X075/2

so we have scaling s ~ 1/(Np(xo))
@ "Soft edge”

s/2
Nsoft ~ N Vxdx ~ Ns3/2
—s/2

so we have scaling s ~ 1/N?/3.
@ "Hard edge”

nhardNN/ 7NN\[

so we have scaling s ~ 1/N2.
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Spectral deformation of the QM projection operator

@ Quantum mechanics Il
Kn = SN i >< 1| is a projection operator (K3 = Ky)

@ Spectral bound I-AIN < En , with Ey = —1/4N2, combined
with pertinent microscopic scaling, shows the deformation of
the domain of the operator H. Deciphering this deformation
yields a microscopic form of the kernel K for each pertinent
scaling, respectively.
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Bound Hy < Ew, or explicitly
2 2
d 1d L 14+2k+v v S 1

a2 X T T 2x a3
with the scaling & = xp + NP?XU)’ converts in the large N limit (k ~ N,
2 _ _ 2
v=T-N)onto &; > %, therefore —% < w2

o QM suggests the use of plane waves, then (27t)? < 72, so the
deformation is the limitation of all possible momenta t to the
strip [-1/2,1/2].

o Identity operator 1, = §(t — t') (completeness)

F(tl) = [ [foo e27”'t/5e_2”"tsds} F(t)dt gets deformed to

—00
projecion operator

PIF(E)] = =, {;'5% e2ﬂff/se—2ﬂff5ds} F(t)dt

@ Hence the universal Dyson kernel

1

. !
2 e27rit/se—27ritsds _ Sm(ﬂ—(/t B t))

1 m(t —t)

§(t—t) — Ksine(t, t) = /



Soft edge

We repeat similar reasoning for soft edge.

@ Deformation in the case of soft edge converts the
Schroedinger eq. in the large N limit onto the bound
—j—; + s < 0 (triangular potential). Role of Fourier
transforms is played by the pair of Airy transforms

F(t) = A[f(2)] = [ o:o Ai(t — 2)f(2)dz

and its inverse

f(z) = / O:O F(£)Ai(t — 2)dt.

@ This transform leads to the spectral condition

t<0

Maciej A. Nowak



Soft edge cont.

@ Combining both Airy transforms we obtain the identity
operator

F(£) = / [/ Al — 2)Ai(t — z)dz} F(t)dt
@ The deformation condition projects the above identity
operator onto

i o0 ‘0 I
PIF ()] :/ {/ Ai(t — 2)Ai(t - z)dz} F(t)dt
so the kernel, understood as a projection, reads

CAI(E)AT(t) — A (E)Ai(t)
n t—t

-0
K (£,1) = / Ai(t — 2)Ai(t — z)dz

where on the r.h.s. we presented the more familiar form of the Airy
kernel based on relation

d lA/(t’ — 2)Ai' (t — z) — Ai' (t — 2)Ai(t — 2)

e P— = Ai(t — 2)Ai(t — z)
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Hard edge

We repeat similar reasoning for the hard edge.
@ Deformation in the case of hard edge yields the bound

d? 1d V2
Ay = dz2  zdz Zz2 <1
where on the I.h.s. we recognize Bessel operator, appearing in
quantum mechanical problems with polar angle symmetry and
v=T-N~ O(1).
@ To see the deformation caused by hard edge scaling in the above
equation we define Hankel transform

F.(t) = H,[f(2)] = /000 zf(2)J,(z)dz

and the inverse Hankel transform is given as

f(z) = /0 TR (6 (t2)

Since the Hankel transform of the Bessel operator reads
H,[A,f(z)] = t?F,(t), the spectral deformation in dual variable t
(note that t cannot be negative) reads simply 0 < ¢t < 1
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Hard edge - cont.

e Combining both Hankel transforms we obtain (modulo change
of the variables) the identity operator

Fo(f) = /OOO UOOO thl,(t,z)Jl,(tz)dz] Fo(t)dt

The deformation condition projects the above identity
operator onto

PIF,(¢)] = /Ooo [/01 th,,(t/z)J,,(tz)dz} F,(t)dt

so the kernel, understood as a projection, reads

i 1 i
KBessel(t: t ) = / ZtJ]/(t Z)Jz/(tZ)dZ
J0

@ Using Lommel integral we arrive at the more familiar form

L (V) (VIIVY = VX (VX)W (/Y)
2(x —y)
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e Bochner theorem
If an infinite sequence of polynomials P,(x) satisfies a second
order eigenvalue eq.

)P, + a(x)Py, + r(x)Ps = AnPn

then p(x), g(x), r(x) must be polynomials of degree 2,1, and
0, respectively

e If additionally polynomials are orthogonal, the only solutions
are polynomials of Jacobi, Laguerre or Hermite

@ This leads to universal limit of determinantal processes for
Sturm-Louiville operators [Bornemann, 2016], i.e. for the
GUE, LUE and JUE (a.k.a. MANOVA) - yielding sine, Airy
and Bessel 3 = 2 universality.
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How to go out from the No-go theorem

@ Consider higher order equation comparing to Sturm-Liouville
(S-L) problem, e.g. third order diff. equation.

@ This leads to nonhermitian operator H.

o Eigenvalue problem is more complicated
HIRy >= Mo|Rn > < Lp|H' =\, < Ly

where |R, > and |L, > are right and left eigenvectors to Ap,.

e Quantum mechanics Il (nonhermitian):
Right and left eigenvectors are bi-orthogonal, i.e. despite
< Lp|lLm ># 0 and < Ry|Rm ># 0, < Lp|Rm >= 0nm

o "Kernel’ Ky = Z, 1 |R >< L;| is a projection operator due
to bi- orthogonallty, KN = Ky. Since we have also the closure
relation (3°72; |Ri >< Lj| = 1), we may try to repeat the
" deformation” trick 1 — K even in the cases beyond the S-L.
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Example - Product of M Wishart matrices

[Akemann, Ipsen, Kieburg, 2014]
d d&/ d
ez g (=g +0)
j=1
"Schroedinger eq.” reads H|R, >= k|Rx >, and explicitly

k+1 )
X

0,—vm,...,—11
v; measure rectangularity of Wisharts, G - Meijer function.
From < f|Hg >=< H'f|g > we read out

1,0
< x|Rk >= Gl,M+1<

M
HT:—zd—1+(—1)MdH< d —VJ').
with explicit solution for < Lx|HT = k < L]

—k

o
dz dz dz
M1
< Lilx >= G;7} X
k‘ 1’M+1 (VM7"'7V170 >

Jj=1
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Example 1 - Product of M Wishart matrices - cont

@ "Halloween hat" singularity for the product of M Wisharts

p(r) ~ r=M/(M+1) dictates microscopic scaling at the origin i.e.
z = Ns.
@ The Sch. equation leads therefore to the deformation (bound)

dyx/ d
H(z) — Afjl\/ul)(s) = % L1 (Sds + 1/j> < 1
@ To unravel this bound we use the pair of Narain transforms.

#s) = [ T k(s 0f(t)d, F(t) = / " bt y)g(y)dy,

where the integral kernels read

_ ~—1/2 ~m,p al,...,ap7b1,...,bq 2y
(o) = 2px 2GRy (21 2l (),
h(y t) _ 2’}/X’Y_1/2Gn’q —bl, ceey —bq7 —aly ...y —ap (yt)2,Y
’ ptq,m+n —dl,...,—dn,—Cl,...,—Cm ’
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Universal hard kernel for the product of Wisharts

@ In our case, kernels read

_ 1,0 -
sy) ? hly, 1) = GO,M+1 (07 —Vly ..., —vy

(M+1)

v

M0 —
k(s,y) = GO,M+1 (u1 ,,,,, vy, 0

@ in dual to s variable t, the bound A
t<1

Identity operator g(x) = [5° [fo~ k(x, t)h(t,y)dt]g(y)dy gets
deformed onto

oo -1
Plel = [ | [ ke (e )] gy
Hence the kernel reads explicitly

1
hard _ 1,0 —
Ky (x,y) = / GO,M+1 <0,71/1 ..... —vy X
J 0

in agreement with [Kuijlaars, Zhang, 2014].
For M =1, G&’ZO( x) = x”/2JV(2\/)?), so one recovers the

(s) <1 reads simply

v,0
Bessel Kernel. Narain transform generalizes Hankel transform.
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Example 2 - Muttalib-Borodin Ensemble

o P(\) ~ AN)AWN) TR Age
where a« > —1 and 6 > 0.

@ 0 = 2 - 3rd order non Hermitian diff. equation [Spencer, Fano
(1951)] (paper on X-rays through matter (sic!))

@ General 0: Duality between product of M Wisharts and M-B:

M « 0 (1)
vi=T,— N, « V;:ﬁ—l, where i=1,....M
o same kernel as Wishart product kernel, by consequitive

operations
© Microscopic scaling x = uN~—3
Q Large N limit
© Change of the variables u = Os7
in agreement with [Kuijlaars, Stivigny, 2014]
@ Analogy to Borodin-like duality similar to relation between
Laguerre-generalized Hermite
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@ Insights from QM offer a pedagogical way to understand
Borodin-Olshanski method and provide an easy alternative to
advanced tools alike Plancherel-Rotach limit of orthogonal
polynomials or asymptotics of Riemann-Hilbert problem

@ (?) Possibility of systematic extensions of S-L problem
(standard approach is based either on replacement of
differential operators by difference operators (Askey-Wilson
scheme) or higher order OPS (Bochner-Krall))

e (7) QM insights for the general 3 # 27
@ (7) Generalization for non-hermitian systems?
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RMT faces Dataism [S. Lohr, 2015; Y. N. Harari, 2016]
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