Universal random matrix kernels from quantum mechanical hydrogen atom problem

Maciej A. Nowak

Mark Kac Complex Systems Research Center, Marian Smoluchowski Institute of Physics Jagiellonian University

Random Matrices, Integrability and Complex Systems

Research Workshop of the Israeli Science Foundation Yad Hashmona, Judean Hills, Israel October 4th, 2018

Acknowledgements

```
Wojciech Tarnowski (JU) [arXiv: 1810.xxxxx]
Jacek Grela (LPTMS, CNRS, U. Paris-Sud)
Jeremi Ochab (JU)
Piotr Warchoł (JU)
```

Tribute

- John Wishart (*1898, Montrose, †1956, Acapulco)
 Biometrika 20A (1928) 32
- Erwin Schroedinger (*1887, Vienna, †1961, Vienna)
 Ann. Physik 79 (1926) 361
- Salomon Bochner (*1899, Kraków, †1982, Houston)
 Math. Z. 29 (1929) 730.

χ^2 distribution and Wishart ensemble

- We consider x_i from iid standard Gaussian distribution and we form $y = \sum_{i=1}^{T} x_i^2$. Pdf of such distribution reads $p(y) \sim y^{T/2-1} e^{-y/2}$ Crucial distribution when analyzing variance, testing hypothesis etc..
- We consider vectors $\vec{x_i}$ from standard real/complex Gaussian distributions and we form matrix X

$$X = \left(\begin{array}{ccc} x_{11} & \dots & x_{1T} \\ \vdots & \vdots & \vdots \\ x_{N1} & \dots & x_{NT} \end{array}\right)$$

Then we form correlation matrix $M=\frac{1}{T}XX^{\dagger}$. Wishart distribution (for the complex case and $N\leqslant T$) reads $P(M)\sim \det M^{T-N}e^{-T\operatorname{tr} M}$

Switching to spectra

- $P_N(\lambda_1,...,\lambda_N) \sim \prod \lambda_i^{T-N} e^{-T \sum \lambda_i} \Delta(\Lambda)^2$
- Slater determinant

$$P_N(\lambda_1,...,\lambda_N) = \frac{1}{N!} \left[\det \psi_{j-1}^{(N)}(\lambda^k) |_{j,k=1}^N \right]^2 = \frac{1}{N!} \left[\det K_N(\lambda_i,\lambda_j) \right]$$

with the **kernel**

$$K_N(\lambda,\mu) = \sum_{l=0}^{N-1} \psi_l^{(N)}(\lambda) \psi_l^{(N)}(\mu)$$

Here
$$\psi_I^{(N)}(\lambda) = e^{-T\lambda/2}\lambda^{(T-N)/2}P_I^{(N)}(\lambda)$$
 is a wave function

• Quantum Mechanics I Radial Schroedinger eq. for hydrogen atom (in units $2\mu=1$). Completely integrable system for any N, T! My favorite citation...

The same equations have the same solutions!

"Old" quantum theory (1914-1917)

- $\hbar \sim \frac{1}{T} \rightarrow 0$
- Bohr-Sommerfeld formula $\oint p(r)dr = (n + \frac{1}{2})2\pi\hbar$
- Semi-classically, $p^2 \frac{1}{r} + \frac{l(l+1)}{r^2} = E$. In the limit $N, T \to \infty$, N/T = c fixed, where N, T are related to n, l, Bohr-Sommerfeld formula **is** Marchenko-Pastur formula for Wishart ensemble (new result?)

•

$$\int_{r_{-}}^{r_{+}} \rho(x) dx = 1 \quad \text{with} \quad \rho(x) = \frac{1}{2\pi cx} \sqrt{(r_{+} - x)(x - r_{-})}$$

where $r_{\pm}=(1\pm\sqrt{c})^2$ are classical turning points.

• Note that same reasoning converts the harmonic oscillator ellipse $E = p^2 + \frac{x^2}{4}$ into Wigner semi-ellipse $\rho(x) = \frac{1}{2\pi} \sqrt{4 - x^2}$ [T. Tao].

Quantum microscopy

Quantum microscopy, cont.

"Bulk"

$$n_{bulk} \sim N \int_{x_0-s/2}^{x_0+s/2} \rho(x) dx \sim N s \rho(x_0)$$

so we have scaling $s \sim 1/(N\rho(x_0))$

"Soft edge"

$$n_{soft} \sim N \int_{-s/2}^{s/2} \sqrt{x} dx \sim N s^{3/2}$$

so we have scaling $s \sim 1/N^{2/3}$.

"Hard edge"

$$n_{hard} \sim N \int_0^s \frac{dx}{\sqrt{x}} \sim N \sqrt{s}$$

so we have scaling $s \sim 1/N^2$.

Spectral deformation of the QM projection operator

- Quantum mechanics II $\hat{K}_N = \sum_{i=1}^{N} |\psi_i > \langle \psi_i|$ is a projection operator $(\hat{K}_N^2 = \hat{K}_N)$
- Spectral bound $\hat{H}_N \leqslant E_N$, with $E_N = -1/4N^2$, combined with pertinent microscopic scaling, shows the deformation of the domain of the operator \hat{H} . Deciphering this deformation yields a microscopic form of the kernel K for each pertinent scaling, respectively.

Bulk

Bound $\hat{H}_N \leqslant E_N$, or explicitly

$$\frac{d^2}{dx^2} + \frac{1}{x}\frac{d}{dx} + \frac{1 + 2k + \nu}{2x} - \frac{\nu^2}{4x^2} \geqslant \frac{1}{4}$$

with the scaling $\frac{x}{T}=x_0+\frac{s}{N\rho(x_0)}$, converts in the large N limit ($k\sim N$,

$$u=T-N$$
) onto $rac{d^2}{ds^2}\geqslantrac{(x_0-r_+)(x_0-r_-)}{4c^2x^2
ho^2(x_0)}$, therefore $-rac{d^2}{ds^2}\leqslant\pi^2$

- QM suggests the use of plane waves, then $(2\pi t)^2 \le \pi^2$, so the deformation is the limitation of all possible momenta t to the strip [-1/2, 1/2].
- Identity operator $\mathbf{1}_{tt'} = \delta(t-t')$ (completeness) $F(t') = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} e^{2\pi i t' s} e^{-2\pi i t s} ds \right] F(t) dt$ gets deformed to projection operator

$$\mathbf{P}[F(t')] = \int_{-\infty}^{\infty} \left[\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i t' s} e^{-2\pi i t s} ds \right] F(t) dt$$

Hence the universal Dyson kernel

$$\delta(t-t^{'})
ightarrow \mathit{K}_{\mathit{Sine}}(t,t^{'}) = \int_{-rac{1}{2}}^{rac{1}{2}} e^{2\pi i t^{'} s} e^{-2\pi i t s} ds = rac{\sin(\pi(t^{'}-t))}{\pi(t^{'}-t)}$$

Soft edge

We repeat similar reasoning for soft edge.

• Deformation in the case of soft edge converts the Schroedinger eq. in the large N limit onto the bound $-\frac{d^2}{ds^2} + s \leqslant 0$ (triangular potential). Role of Fourier transforms is played by the pair of Airy transforms

$$F(t) = A[f(z)] = \int_{-\infty}^{\infty} Ai(t-z)f(z)dz$$

and its inverse

$$f(z) = \int_{-\infty}^{\infty} F(t)Ai(t-z)dt.$$

This transform leads to the spectral condition

$$t \leq 0$$

Soft edge cont.

Combining both Airy transforms we obtain the identity operator

$$F(t') = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} Ai(t'-z)Ai(t-z)dz \right] F(t)dt$$

The deformation condition projects the above identity operator onto

$$\mathbf{P}[F(t')] = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{0} Ai(t'-z)Ai(t-z)dz \right] F(t)dt$$

so the kernel, understood as a projection, reads

$$K_{Airy}(t,t') = \int_{-\infty}^{0} Ai(t'-z)Ai(t-z)dz = \frac{Ai(t')Ai'(t) - Ai'(t')Ai(t)}{t'-t}$$

where on the r.h.s. we presented the more familiar form of the Airy kernel based on relation

$$\frac{d}{dz}\left[\frac{Ai(t^{'}-z)Ai^{'}(t-z)-Ai^{'}(t^{'}-z)Ai(t-z)}{t^{'}-t}\right]=Ai(t^{'}-z)Ai(t-z)$$

Hard edge

We repeat similar reasoning for the hard edge.

Deformation in the case of hard edge yields the bound

$$\Delta_{
u} \equiv -rac{d^2}{dz^2} - rac{1}{z}rac{d}{dz} - rac{
u^2}{z^2} \leqslant 1$$

where on the l.h.s. we recognize Bessel operator, appearing in quantum mechanical problems with polar angle symmetry and $\nu=T-N\sim O(1)$.

 To see the deformation caused by hard edge scaling in the above equation we define Hankel transform

$$F_{\nu}(t) = H_{\nu}[f(z)] = \int_0^{\infty} z f(z) J_{\nu}(z) dz$$

and the inverse Hankel transform is given as

$$f(z) = \int_0^\infty t F_{\nu}(t) J_{\nu}(tz)$$

Since the Hankel transform of the Bessel operator reads $H_{\nu}[\Delta_{\nu}f(z)] = t^2F_{\nu}(t)$, the spectral deformation in dual variable t (note that t cannot be negative) reads simply $0 \le t \le 1$

Hard edge - cont.

 Combining both Hankel transforms we obtain (modulo change of the variables) the identity operator

$$F_{\nu}(t') = \int_{0}^{\infty} \left[\int_{0}^{\infty} zt J_{\nu}(t'z) J_{\nu}(tz) dz \right] F_{\nu}(t) dt$$

The deformation condition projects the above identity operator onto

$$\mathbf{P}[F_{\nu}(t')] = \int_{0}^{\infty} \left[\int_{0}^{1} zt J_{\nu}(t'z) J_{\nu}(tz) dz \right] F_{\nu}(t) dt$$

so the kernel, understood as a projection, reads

$$K_{Bessel}(t,t^{'}) = \int_{0}^{1} zt J_{\nu}(t^{'}z) J_{\nu}(tz) dz$$

• Using Lommel integral we arrive at the more familiar form

$$K_{Bessel}(x,y) = \frac{J_{\nu}(\sqrt{x})J_{\nu}'(\sqrt{y})\sqrt{y} - \sqrt{x}J_{\nu}'(\sqrt{x})J_{\nu}(\sqrt{y})}{2(x-y)}$$

No-go theorem

Bochner theorem

If an infinite sequence of polynomials $P_n(x)$ satisfies a second order eigenvalue eq.

$$p(x)P_{n}^{"} + q(x)P_{n}^{'} + r(x)P_{n} = \lambda_{n}P_{n}$$

then p(x), q(x), r(x) must be polynomials of degree 2,1, and 0, respectively

- If additionally polynomials are orthogonal, the only solutions are polynomials of Jacobi, Laguerre or Hermite
- This leads to universal limit of determinantal processes for Sturm-Louiville operators [Bornemann, 2016], i.e. for the GUE, LUE and JUE (a.k.a. MANOVA) yielding sine, Airy and Bessel $\beta=2$ universality.

How to go out from the No-go theorem

- Consider higher order equation comparing to Sturm-Liouville (S-L) problem, e.g. third order diff. equation.
- This leads to nonhermitian operator \mathcal{H} .
- Eigenvalue problem is more complicated

$$\mathcal{H}|R_n>=\lambda_n|R_n> \quad < L_n|\mathcal{H}^{\dagger}=\lambda_n < L_n|$$

where $|R_n>$ and $|L_n>$ are right and left eigenvectors to λ_n .

- Quantum mechanics III (nonhermitian): Right and left eigenvectors are bi-orthogonal, i.e. despite $< L_n | L_m > \neq 0$ and $< R_n | R_m > \neq 0$, $< L_n | R_m > = \delta_{nm}$
- "Kernel" $\hat{K}_N = \sum_{i=1}^N |R_i| > < L_i$ is a projection operator due to bi-orthogonality, $\hat{K}_N^2 = \hat{K}_N$. Since we have also the closure relation $(\sum_{i=1}^\infty |R_i| > < L_i) = 1$, we may try to repeat the "deformation" trick $1 \to \hat{K}$ even in the cases beyond the S-L.

Example - Product of M Wishart matrices

[Akemann, Ipsen, Kieburg, 2014]

$$\mathcal{H} = z \frac{d}{dz} - \frac{d}{dz} \prod_{j=1}^{M} \left(z \frac{d}{dz} + \nu_j \right)$$

"Schroedinger eq." reads $\mathcal{H}|R_k>=k|R_k>$, and explicitly

$$< x | R_k > = G_{1,M+1}^{1,0} \binom{k+1}{0,-\nu_M,\ldots,-\nu_1} x$$

 v_i measure rectangularity of Wisharts, $G_{...}$ - Meijer function. From $< f|\mathcal{H}g> = <\mathcal{H}^\dagger f|g>$ we read out

$$\mathcal{H}^{\dagger} = -zrac{d}{dz} - 1 + (-1)^{M}rac{d}{dz}\prod_{i=1}^{M}\left(zrac{d}{dz} -
u_{j}
ight).$$

with explicit solution for $\langle L_k | \mathcal{H}^{\dagger} = k \langle L_k |$

$$< L_k | x > = G_{1,M+1}^{M,1} \begin{pmatrix} -k \\ \nu_M, \dots, \nu_1, 0 \\ x \end{pmatrix}$$

Example 1 - Product of M Wishart matrices - cont

- "Halloween hat" singularity for the product of M Wisharts $\rho(r) \sim r^{-M/(M+1)}$ dictates microscopic scaling at the origin i.e. z = Ns.
- The Sch. equation leads therefore to the deformation (bound)

$$\mathcal{H}(z) o \Delta_{\vec{\nu}}^{(M+1)}(s) \equiv -rac{d}{ds} \prod_{i=1}^{M} \left(s rac{d}{ds} +
u_j
ight) \leqslant 1.$$

To unravel this bound we use the pair of Narain transforms.

$$g(s) = \int_0^\infty k(s,t)f(t)dt, \qquad f(t) = \int_0^\infty h(t,y)g(y)dy,$$

where the integral kernels read

$$k(s,t) = 2\gamma x^{\gamma-1/2} G_{p+q,m+n}^{m,p} \begin{pmatrix} a_1, \dots, a_p, b_1, \dots, b_q \\ c_1, \dots, c_m, d_1, \dots, d_n \end{pmatrix} (st)^{2\gamma} ,$$

$$h(y,t) = 2\gamma x^{\gamma-1/2} G_{p+q,m+n}^{n,q} \begin{pmatrix} -b_1, \dots, -b_q, -a_1, \dots, -a_p \\ -d_1, \dots, -d_n, -c_1, \dots, -c_m \end{pmatrix} (yt)^{2\gamma} .$$

Universal hard kernel for the product of Wisharts

In our case, kernels read

$$k(s,y) = G_{0,M+1}^{M,0} \begin{pmatrix} & & \\ \nu_1, \dots, \nu_M, 0 & \\ \end{bmatrix} sy \bigg), \qquad h(y,t) = G_{0,M+1}^{1,0} \begin{pmatrix} & & \\ 0, -\nu_1, \dots, -\nu_M & \\ \end{bmatrix} ty \bigg).$$

- in dual to s variable t, the bound $\Delta^{(M+1)}_{\vec{\nu}}(s) \leqslant 1$ reads simply $t \leqslant 1$
- Identity operator $g(x) = \int_0^\infty \left[\int_0^\infty k(x,t)h(t,y)dt \right]g(y)dy$ gets deformed onto

$$\mathbf{P}[g(x)] = \int_0^\infty \left[\int_0^1 k(x,t)h(t,y)dt \right] g(y)dy$$

Hence the kernel reads explicitly

$$K_M^{hard}(x,y) = \int_0^1 G_{0,M+1}^{1,0} \left(\begin{array}{c} - \\ 0, -\nu_1, \dots, -\nu_M \end{array} \middle| sx \right) G_{0,M+1}^{M,0} \left(\begin{array}{c} - \\ \nu_1, \dots, \nu_M, 0 \end{array} \middle| sy \right) ds.$$

in agreement with [Kuijlaars, Zhang, 2014].

• For M=1, $G_{0,2}^{1,0}\binom{-}{\nu,0}x = x^{\nu/2}J_{\nu}(2\sqrt{x})$, so one recovers the Bessel Kernel. Narain transform generalizes Hankel transform.

Example 2 - Muttalib-Borodin Ensemble

- $P(\lambda) \sim \Delta(\lambda)\Delta(\lambda^{\theta}) \prod_{k=1}^{N} \lambda_k^{\alpha} e^{-\lambda_k}$ where $\alpha \geqslant -1$ and $\theta \geqslant 0$.
- $\theta = 2$ 3rd order non Hermitian diff. equation [Spencer, Fano (1951)] (paper on X-rays through matter (sic!))
- General θ : Duality between product of M Wisharts and M-B:

$$M \leftrightarrow \theta$$
 (1)
 $\nu_i = T_i - N_i \leftrightarrow \nu_i = \frac{i}{M} - 1$, where $i = 1, ..., M$

- same kernel as Wishart product kernel, by consequitive operations

 - 2 Large N limit
 - 3 Change of the variables $u = \theta s^{\frac{1}{\theta}}$ in agreement with [Kuijlaars, Stivigny, 2014]
- Analogy to Borodin-like duality similar to relation between Laguerre-generalized Hermite

Summary

- Insights from QM offer a pedagogical way to understand Borodin-Olshanski method and provide an easy alternative to advanced tools alike Plancherel-Rotach limit of orthogonal polynomials or asymptotics of Riemann-Hilbert problem
- (?) Possibility of systematic extensions of S-L problem (standard approach is based either on replacement of differential operators by difference operators (Askey-Wilson scheme) or higher order OPS (Bochner-Krall))
- (?) QM insights for the general $\beta \neq 2$?
- (?) Generalization for non-hermitian systems?

RMT faces Dataism [S. Lohr, 2015; Y. N. Harari, 2016]

maciej.a.nowak@uj.edu.pl

