
On the persistence probability for random truncated orthogonal
matrices and Kac polynomials

Mihail Poplavskyi
in collaboration with: M. Gebert (QMUL, London), G. Schehr (LPTMS,

Orsay)

Department of Mathematics, King’s College London

Random Matrices, Integrability and Complex Systems,
October 5, 2018

M. Poplavskyi (KCL) Kac polynomials & truncated orthogonal matrices Yad Hashmona,October 5, 2018



Persistence probability

M. Poplavskyi (KCL) Kac polynomials & truncated orthogonal matrices Yad Hashmona,October 5, 2018



Persistence probability

Let {Xt}t≥0 be a real valued
stochastic process, then�� ��pT = P [Xt > 0, ∀t ∈ [0,T ]] .

is a persistence probability
of Xt up to time T .

t0 = inf {t ≥ 0 : Xt ≤ 0}

pT = P [t0 ≥ T ] · P [X0 > 0]

What is the typical behaviour of pT?

I Discrete random walk, Xn+1 − Xn are i.i.d. ⇒ pN ∝ N−1/2.

I Continuous time, {Bt}t≥0 ⇒ pT ∼ T−1/2.

I GSP with bounded spectral measures ⇒ pT ∝ e−θT .
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Motivation and known results

I Physics: electrons in matter are modelled by zeros of GSP; non-equilibrium
systems: diffusive, spin systems; diffusion equation with random IC.
( Dembo, Majumdar, Mukhterjee, Schehr)

I Finances: reliability theory; stocks trading (price ”=” Gaussian Process).
I Mathematics:

1. Gaussian analytic functions and their zeros (Sodin, Tsirelson, Nishry,
Hough, Krishnapur, Peres, Virag, etc.)

2. Random polynomials (Dembo, Zeitouni, Poonen, Shao) with applications to
diffusion equation (Dembo, Mukhterjee, Majumdar, Schehr).

3. Hyperbolic GAFs and sinc-kernel: estimates on persistence probability
(Antezana, Buckley, Marzo, Olsen).

4. GSP on the lattice in connection to nodal lines of spherical harmonics (
Krishna, Krishnapur).

5. GSP via spectral measure (Feldheim-s, Jaye, Nazarov, Nitzan).
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Kac polynomials.

Kac polynomials are the polynomials with i.i.d. random coefficients, i.e.

Kn (z) =
n∑

k=0

akz
k , where {ak}nk=0 i.i.d. real random variables.
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Find the distribution of random roots {zk}nk=1 . How many of them are
real? [NR(n)] Persistence probability pn = P [Kn (x) 6= 0, ∀x ∈ R]?

Some obvious symmetries: z → 1/z ; if a0 has a symmetric distribution
z → −z .
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Kac polynomials.

Kac polynomials are the polynomials with i.i.d. random coefficients, i.e.

Kn (z) =
n∑

k=0

akz
k , where {ak}nk=0 i.i.d. real random variables.

I Littlewood & Offord, ’38, ’39: (log log log n)−1 � NR(n) log−1 n� log n;

I Kac, ’43: if a0 ∼ N (0, 1), then E [NR(n)] =
(

2
π

+ o(1)
)

log n;

I Erdos & Offord, ’56, Ibragimov & Maslova, ’68, ’71: E [NR(n)],
Var [NR(n)] universality for a wide class of distributions;

I Littlewood & Offord, ’39: pn = O
(
log−1 n

)
;

I Dembo, Poonen, Shao, Zeitouni ’02: p2n ∼ n−4θ, for some explicit θ;

I Tao & Vu, ’15: Local universality of roots distribution;

I Bleher & Di, ’97: All correlation functions for real roots.

I Matsumoto & Shirai, ’13: Pfaffian structure for random series.

Main problem: can one find the value of θ?
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Kac polynomials as stochastic process.

Let a0 ∼ N(0, 1), then following Dembo, Poonen, Shao, Zeitouni ’02 one can
consider Kn(x) as a Gaussian Stochastic Process (GSP) with x being a time.

Cov [Kn(x),Kn(y)] =
1− (xy)n+1

1− xy
.

In the limit n→∞ one introduces exponential time x = 1− e−t and a proper
scaling to ”obtain” stationary GSP Xt with covariance function

R (t) = sech (t/2) .

Persistence probability for Xt decays exponentially with

θ = −4 lim
T→∞

1

T
log P

[
sup

0≤t≤T
Xt < 0

]
.

It was shown by authors:

I θ ∈ [0.1, 0.5] (theoretically).

I θ ≈ 0.1875± 0.01 (numerically).

I log p2n

log n
→ −4θ.
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Truncated random orthogonal matrices.

We study ensemble of random matrices M2n of size 2n × 2n formed by top left
minors of Haar distributed orthogonal matrices O ∈ O (2n + 1).
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O =

(
M2n u
vT a

)
, O OT = I⇒ M2nM

T
2n = I− u uT .
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Figure: Blue dots represent eigenvalues of truncated random orthogonal matrices,
while red show roots of Kac polynomials.
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Truncated random orthogonal matrices.

We study ensemble of random matrices M2n of size 2n × 2n formed by top left
minors of Haar distributed orthogonal matrices O ∈ O (2n + 1).

O =

(
M2n u
vT a

)
,

where u and v are column vectors of length 2n and a is a scalar. Let

X =

(
I2n − zM2n u
−vT z−1a

)
.

detX = det (I2n − zM2n)
(
z−1a + vT (I2n − zM2n)−1 u

)
= z−1a det

(
I2n − zM2n + za−1uvT

)
.

detX = z−1a det
(
I2n − zM−T

2n

)
= z−1a detM−1

2n det (M2n − zI2n) .

det (zI2n −M2n)

det (zM2n − I2n)
= detM2n

(
1 + za−1vT (I2n − zM2n)−1 u

)
= detO

(
a + zvT (I2n − zM2n)−1 u

)
.

For |z | < 1 one can write the r.h.s. as a series (up to a sign of detO)

F2n (z) = a +
∞∑
k=1

zkvTMk−1
2n u ”→ ”K2n(z).
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Truncations of random orthogonal matrices.

We start with the full joint distribution of the eigenvalues of M2n. Since M2n is
real and of even size, it has l (with l even) real eigenvalues (and possibly
l = 0), λ1 ≤ λ2 ≤ . . . ≤ λl , and m = n − l/2 pairs of complex conjugate
eigenvalues z1 = x1 + iy1, z2 = x1 − iy1, . . . , z2m−1 = xm + iym, z2m = xm − iym
with x1 ≤ x2 ≤ . . . ≤ xm. Then ordered eigenvalues of the matrix M2n

conditioned to have l real eigenvalues have joint distribution (Khoruzhenko,
Sommers, Zyczkowski, ’10)

p(l,m)
(
~λ, ~z
)

= 2mCn

∣∣∣∆(~λ ∪ ~z)∣∣∣ l∏
j=1

w (λj)
2m∏
j=1

w (zj) ,

where Cn is a normalization constant

w 2(z) = (2π|1− z2|)−1 ,

and ∆ is a Vandermonde determinant. This yields a Pfaffian structure! The
generating function of Nn reads

〈esNn 〉M2n =

〈
2n∏
i=1

1− (1− es)χR(ζi )

〉
M2n

,

for s < 0, where the product runs over all the eigenvalues ζi ’s – both real and
complex – of M2n. In above, χR(z) = 1 if z is real and 0 otherwise and
〈· · · 〉M2n denotes an average over the joint distribution.

M. Poplavskyi (KCL) Kac polynomials & truncated orthogonal matrices Yad Hashmona,October 5, 2018



Truncations of random orthogonal matrices.

Theorem (Sinclair, ’07).
Let {Pi (x)}N−1

i=0 be a set of monic polynomials and Ψ : RN×N → R is
(i) constant on similarity classes: Ψ(AXA−1) = Ψ(X ) for all A ∈ RN×N

(ii) there exists a function ψ : C→ R such that if D is a diagonal matrix with
entries γ1, γ2, . . . , γN then Ψ(D) = ψ(γ1)ψ(γ2) · · ·ψ(γN).
Then the average over ensemble of random matrices is given by

〈Ψ〉 = C−1
N Pf {〈Piψ,Pjψ〉R + 〈Piψ,Pjψ〉C}Ni,j=1 .

Corresponding two skew-symmetric inner products are given by

〈P,Q〉R :=

∫
R2

w(α1)w(α2) P(α1)Q(α2) sgn(α2 − α1) dα1 dα2,

〈P,Q〉C := −2i

∫
C
w(β)w(β) P(β)Q(β) sgn(Im(β)) dλ2(β)

Following Forrester, Ipsen-Forrester P2j (z) = z2j ,P2j+1 (z) = z2j+1 − 2j
2j+1

z2j−1 .

M. Poplavskyi (KCL) Kac polynomials & truncated orthogonal matrices Yad Hashmona,October 5, 2018



Truncations of random orthogonal matrices.

Generating function of Nn can be now computed explicitly

〈esNn 〉M2n = det
0≤j,k≤n−1

[
δj,k −

1− e2s

π(j + k + 1/2)

]
.

Top left minor of infinite Hilbert matrix! H (λ) =
{

(π(j + k + λ))−1
}∞
j,k=0

.

det(I− αHn) = exp {Tr (ln(I− αHn))} ,with α = (1− e2s).

Theorem (Widom, ’66). The n× n matrix Hn is a top left minor of a rescaled
semi-infinite Hilbert’s matrix H, which has an absolutely continuous spectrum
in [0, 1] and

µn,m := Tr Hm
n =

1

2π

∞∫
0

sechm
(πu

2

)
du log n (1 + o(1)) , n→∞.

〈esNn 〉M2n = n
1

2π

∞∫
0

log(1−(1−e2s ) sechπu
2 )du+o(1)

.

For s < 0, the integral can be calculated explicitly as

〈esNn 〉M2n ∼ nψ(s) , ψ(s) =
1

8
− 2

π2

[
cos−1

(
es√

2

)]2

.
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Rigorous asymptotic analysis of Hilbert matrix

I Hilbert’s inequality is equivalent to ‖Hn‖ < 1.

I Let µm = lim
n→∞

µn,m.

det(I− αHn) = −
∞∑
k=1

k−1µn,k ≤ −
M∑
k=1

k−1µn,k → −
M∑
k=1

k−1µk , ∀M.

I det(I− αHn) = −
∞∑
k=1

k−1µn,k ≥
∞∑
k=1

k−1µ̃n,k , where µ̃n,k = Tr PnH
kPn.

I H is diagonalizable via Wilson polynomials, and moreover

tr
(
PnH

mPn

)
=

∫ ∞
0

dx
( 1

cosh(πx)

)m 2

cosh(πx)

N−1∑
n=0

∣∣P̂n(x2)
∣∣2.

I Uniform asymptotics for Wilson polynomials yield tr
(
PnH

mPn

)
→ µm.
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Analysis for the result.

Now taking s → −∞ one obtains the probability that M2n has no real
eigenvalues, using Q0(1,N) = Prob.(Nn = 0) = lims→−∞〈esNn 〉M2n ∼ n−3/8.
From the generating function, one can also obtain the cumulants of Nn.

〈Np
t 〉c ∼ κp ln t , κp =

2p−2

π2

p∑
m=1

(−2)m−1Γ2
(m

2

)
S(m)
p ,

where S(m)
p is the Stirling number of the second kind. Moreover, for large n and

k, with k/ ln n fixed, pk(n) = P [Nn = k] takes the large deviation form

pk(n) ∼ n−ϕ(k/ ln n) ,

where the large deviation function ϕ(x) is computed exactly. Its asymptotic
behaviours are

ϕ(x) ∼


3

16
+ x

2
ln x , x → 0

1
2σ2 (x − 1

2π
)2 , |x − 1

2π
| � 1

π2

8
x2 , x →∞

with σ2 = 1/π − 2/π2.
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Diffusion equation with random IC.

Another example studied by Schehr & Majumdar, Dembo & Mukherjee is the
d-dimensional diffusion equation

∂tφ(x, t) = ∆φ(x, t),with x ∈ Rd , t ∈ R+,

and initial data φ(x, t = 0) given by a Gaussian random field, with zero mean
and short range correlations

〈φ(x, 0)φ(x′, 0)〉 = δd(x− x′).

The persistence p0(t, L) is the probability that φ(x, t), at some fixed point x in
space with L = ‖x‖d , does not change sign up to time t. It takes the scaling
form, for large t and large L, with t/L2 fixed

p0(t, L) ∼ L−2θ(d)h(L2/t) ,

with h(u)→ const, when u → 0 and h(u) ∝ uθ(d) when u →∞. Normalized
process Xt = φ(0, t)/〈φ(0, t)2〉 is a GSP characterised by its autocorrelation
function

C
(
t, t′

)
= (2
√
t t′/(t + t′))d/2,when L→∞.

In terms of logarithmic time T = ln t, Y (T ) = X (eT ) is a Gaussian stationary
process with covariance

c(T ) = [sech(T/2)]d/2.

Numerical simulations showed: θ(1) = 0.1207 . . ., θ(2) = 0.1875 . . ..
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Ising spin model.

We consider the semi-infinite Ising spin chain, whose configuration at time t is
given by {σi (t)}i≥0, with σi (t) = ±1. Initially, σi (0) = ±1 with equal
probability 1/2 and, at subsequent time, the system evolves according to the
Glauber dynamics at T = 0

time

t = 0

time

i = 0 i = 0 i = 6i = 6

Derrida, Hakim, Pasquier ’96 used mapping of q-states Potts model onto
coalescing random walks to study the fraction r(q, t) of spins which never flip
up to time t and showed it decays like a power law

r (q, t) ∼ t−θ(q),

where

θ (q) = −1

8
+

2

π2

[
arccos

2− q√
2q

]2

, and θ (2) =
3

8
.
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Stochastic models. Final remarks.

GSP with
c(T ) = sech(T/2)

Diffusion equation 

       in 
d = 2

Kac’s polynomials


Truncated random

orthogonal matrices


Semi-infinite

Ising chain with 


Glauber dynamics
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Thank you for your attention!
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