On the persistence probability for random truncated orthogonal matrices and Kac polynomials

Mihail Poplavskyi
in collaboration with: M. Gebert (QMUL, London), G. Schehr (LPTMS, Orsay)

Department of Mathematics, King's College London

Random Matrices, Integrability and Complex Systems, October 5, 2018

EPSRC

$2-1-\log -\operatorname{lox}$

Persistence probability

Persistence probability

Let $\left\{X_{t}\right\}_{t \geq 0}$ be a real valued
stochastic process, then
$p_{T}=\mathbb{P}\left[X_{t}>0, \forall t \in[0, T]\right]$.
is a persistence probability of X_{t} up to time T.

$$
\begin{gathered}
t_{0}=\inf \left\{t \geq 0: X_{t} \leq 0\right\} \\
p_{T}=\mathbb{P}\left[t_{0} \geq T\right] \cdot \mathbb{P}\left[X_{0}>0\right]
\end{gathered}
$$

What is the typical behaviour of p_{T} ?

Persistence probability

$\begin{array}{ll}\text { Let }\left\{X_{t}\right\}_{t \geq 0} & \text { be a real valued } \\ \text { stochastic process, then }\end{array}$
$p_{T}=\mathbb{P}\left[X_{t}>0, \forall t \in[0, T]\right]$.
is a persistence probability of X_{t} up to time T.

$$
\begin{gathered}
t_{0}=\inf \left\{t \geq 0: X_{t} \leq 0\right\} \\
p_{T}=\mathbb{P}\left[t_{0} \geq T\right] \cdot \mathbb{P}\left[X_{0}>0\right]
\end{gathered}
$$

What is the typical behaviour of p_{T} ?

- Discrete random walk, $X_{n+1}-X_{n}$ are i.i.d. $\Rightarrow p_{N} \propto N^{-1 / 2}$.

Persistence probability

Let $\left\{X_{t}\right\}_{t \geq 0}$ be a real valued
stochastic process, then
$p_{T}=\mathbb{P}\left[X_{t}>0, \forall t \in[0, T]\right]$.
is a persistence probability of X_{t} up to time T.

$$
\begin{gathered}
t_{0}=\inf \left\{t \geq 0: X_{t} \leq 0\right\} \\
p_{T}=\mathbb{P}\left[t_{0} \geq T\right] \cdot \mathbb{P}\left[X_{0}>0\right]
\end{gathered}
$$

What is the typical behaviour of p_{T} ?

- Discrete random walk, $X_{n+1}-X_{n}$ are i.i.d. $\Rightarrow p_{N} \propto N^{-1 / 2}$.
- Continuous time, $\left\{B_{t}\right\}_{t \geq 0} \Rightarrow p_{T} \sim T^{-1 / 2}$.

Persistence probability

$\begin{array}{ll}\text { Let }\left\{X_{t}\right\}_{t \geq 0} & \text { be a real valued } \\ \text { stochastic process, then }\end{array}$ stochastic process, then
$p_{T}=\mathbb{P}\left[X_{t}>0, \forall t \in[0, T]\right]$.
is a persistence probability of X_{t} up to time T.

$$
\begin{gathered}
t_{0}=\inf \left\{t \geq 0: X_{t} \leq 0\right\} \\
p_{T}=\mathbb{P}\left[t_{0} \geq T\right] \cdot \mathbb{P}\left[X_{0}>0\right]
\end{gathered}
$$

What is the typical behaviour of p_{T} ?

- Discrete random walk, $X_{n+1}-X_{n}$ are i.i.d. $\Rightarrow p_{N} \propto N^{-1 / 2}$.
- Continuous time, $\left\{B_{t}\right\}_{t \geq 0} \Rightarrow p_{T} \sim T^{-1 / 2}$.
- GSP with bounded spectral measures $\Rightarrow p_{T} \propto e^{-\theta T}$.

$$
\text { Guess: } p_{T} \propto T^{-\theta}, \text { or } p_{T} \propto e^{-\theta T}, \quad T \rightarrow \infty \text { ?. }
$$

Motivation and known results

- Physics: electrons in matter are modelled by zeros of GSP; non-equilibrium systems: diffusive, spin systems; diffusion equation with random IC. (Dembo, Majumdar, Mukhterjee, Schehr)

Motivation and known results

- Physics: electrons in matter are modelled by zeros of GSP; non-equilibrium systems: diffusive, spin systems; diffusion equation with random IC. (Dembo, Majumdar, Mukhterjee, Schehr)
- Finances: reliability theory; stocks trading (price " $=$ " Gaussian Process).

Motivation and known results

- Physics: electrons in matter are modelled by zeros of GSP; non-equilibrium systems: diffusive, spin systems; diffusion equation with random IC. (Dembo, Majumdar, Mukhterjee, Schehr)
- Finances: reliability theory; stocks trading (price " $=$ " Gaussian Process).
- Mathematics:

$$
T^{-1} \log \mathbb{P}\left[X_{t}>0, t \in[0, T]\right]
$$

Motivation and known results

- Physics: electrons in matter are modelled by zeros of GSP; non-equilibrium systems: diffusive, spin systems; diffusion equation with random IC. (Dembo, Majumdar, Mukhterjee, Schehr)
- Finances: reliability theory; stocks trading (price " $=$ " Gaussian Process).
- Mathematics:

1. Gaussian analytic functions and their zeros (Sodin, Tsirelson, Nishry, Hough, Krishnapur, Peres, Virag, etc.)

Motivation and known results

- Physics: electrons in matter are modelled by zeros of GSP; non-equilibrium systems: diffusive, spin systems; diffusion equation with random IC.
(Dembo, Majumdar, Mukhterjee, Schehr)
- Finances: reliability theory; stocks trading (price " $=$ " Gaussian Process).
- Mathematics:

1. Gaussian analytic functions and their zeros (Sodin, Tsirelson, Nishry, Hough, Krishnapur, Peres, Virag, etc.)
2. Random polynomials (Dembo, Zeitouni, Poonen, Shao) with applications to diffusion equation (Dembo, Mukhterjee, Majumdar, Schehr).

Motivation and known results

- Physics: electrons in matter are modelled by zeros of GSP; non-equilibrium systems: diffusive, spin systems; diffusion equation with random IC. (Dembo, Majumdar, Mukhterjee, Schehr)
- Finances: reliability theory; stocks trading (price " $=$ " Gaussian Process).
- Mathematics:

1. Gaussian analytic functions and their zeros (Sodin, Tsirelson, Nishry, Hough, Krishnapur, Peres, Virag, etc.)
2. Random polynomials (Dembo, Zeitouni, Poonen, Shao) with applications to diffusion equation (Dembo, Mukhterjee, Majumdar, Schehr).
3. Hyperbolic GAFs and sinc-kernel: estimates on persistence probability (Antezana, Buckley, Marzo, Olsen).

Motivation and known results

- Physics: electrons in matter are modelled by zeros of GSP; non-equilibrium systems: diffusive, spin systems; diffusion equation with random IC. (Dembo, Majumdar, Mukhterjee, Schehr)
- Finances: reliability theory; stocks trading (price " $=$ " Gaussian Process).
- Mathematics:

1. Gaussian analytic functions and their zeros (Sodin, Tsirelson, Nishry, Hough, Krishnapur, Peres, Virag, etc.)
2. Random polynomials (Dembo, Zeitouni, Poonen, Shao) with applications to diffusion equation (Dembo, Mukhterjee, Majumdar, Schehr).
3. Hyperbolic GAFs and sinc-kernel: estimates on persistence probability (Antezana, Buckley, Marzo, Olsen).
4. GSP on the lattice in connection to nodal lines of spherical harmonics (Krishna, Krishnapur).

Still no known persistence constants for general GSP!

Motivation and known results

- Physics: electrons in matter are modelled by zeros of GSP; non-equilibrium systems: diffusive, spin systems; diffusion equation with random IC. (Dembo, Majumdar, Mukhterjee, Schehr)
- Finances: reliability theory; stocks trading (price " $=$ " Gaussian Process).
- Mathematics:

1. Gaussian analytic functions and their zeros (Sodin, Tsirelson, Nishry, Hough, Krishnapur, Peres, Virag, etc.)
2. Random polynomials (Dembo, Zeitouni, Poonen, Shao) with applications to diffusion equation (Dembo, Mukhterjee, Majumdar, Schehr).
3. Hyperbolic GAFs and sinc-kernel: estimates on persistence probability (Antezana, Buckley, Marzo, Olsen).
4. GSP on the lattice in connection to nodal lines of spherical harmonics (Krishna, Krishnapur).
5. GSP via spectral measure (Feldheim-s, Jaye, Nazarov, Nitzan).

Still no known persistence constants for general GSP!

Kac polynomials.

Kac polynomials are the polynomials with i.i.d. random coefficients, i.e.

$$
K_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}, \quad \text { where }\left\{a_{k}\right\}_{k=0}^{n} \text { i.i.d. real random variables. }
$$

Find the distribution of random roots $\left\{z_{k}\right\}_{k=1}^{n}$. How many of them are real? $\left[\mathcal{N}_{\mathbb{R}}(n)\right]$ Persistence probability $p_{n}=\mathbb{P}\left[K_{n}(x) \neq 0, \forall x \in \mathbb{R}\right]$?

Some obvious symmetries: $z \rightarrow 1 / z$; if a_{0} has a symmetric distribution

$$
z \rightarrow-z .
$$

Kac polynomials.

Kac polynomials are the polynomials with i.i.d. random coefficients, i.e.

$$
K_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}, \quad \text { where }\left\{a_{k}\right\}_{k=0}^{n} \text { i.i.d. real random variables. }
$$

- Littlewood \& Offord, '38, '39: $(\log \log \log n)^{-1} \ll \mathcal{N}_{\mathbb{R}}(n) \log ^{-1} n \ll \log n$;
- Kac, '43: if $a_{0} \sim N(0,1)$, then $\mathbb{E}\left[\mathcal{N}_{\mathbb{R}}(n)\right]=\left(\frac{2}{\pi}+o(1)\right) \log n$;
- Erdos \& Offord, '56, Ibragimov \& Maslova, '68, '71: $\mathbb{E}\left[\mathcal{N}_{\mathbb{R}}(n)\right]$, $\operatorname{Var}\left[\mathcal{N}_{\mathbb{R}}(n)\right]$ universality for a wide class of distributions;
- Littlewood \& Offord, '39: $p_{n}=O\left(\log ^{-1} n\right)$;
- Dembo, Poonen, Shao, Zeitouni '02: $p_{2 n} \sim n^{-4 \theta}$, for some explicit θ;
- Tao \& Vu, '15: Local universality of roots distribution;
- Bleher \& Di, '97: All correlation functions for real roots.
- Matsumoto \& Shirai, '13: Pfaffian structure for random series.

Main problem: can one find the value of θ ?

Kac polynomials as stochastic process.

Let $a_{0} \sim N(0,1)$, then following Dembo, Poonen, Shao, Zeitouni '02 one can consider $K_{n}(x)$ as a Gaussian Stochastic Process (GSP) with x being a time.

$$
\operatorname{Cov}\left[K_{n}(x), K_{n}(y)\right]=\frac{1-(x y)^{n+1}}{1-x y}
$$

In the limit $n \rightarrow \infty$ one introduces exponential time $x=1-e^{-t}$ and a proper scaling to "obtain" stationary GSP X_{t} with covariance function

$$
R(t)=\operatorname{sech}(t / 2)
$$

Persistence probability for X_{t} decays exponentially with

$$
\theta=-4 \lim _{T \rightarrow \infty} \frac{1}{T} \log \mathbb{P}\left[\sup _{0 \leq t \leq T} X_{t}<0\right] .
$$

It was shown by authors:

- $\theta \in[0.1,0.5]$ (theoretically).

Kac polynomials as stochastic process.

Let $a_{0} \sim N(0,1)$, then following Dembo, Poonen, Shao, Zeitouni '02 one can consider $K_{n}(x)$ as a Gaussian Stochastic Process (GSP) with x being a time.

$$
\operatorname{Cov}\left[K_{n}(x), K_{n}(y)\right]=\frac{1-(x y)^{n+1}}{1-x y}
$$

In the limit $n \rightarrow \infty$ one introduces exponential time $x=1-e^{-t}$ and a proper scaling to "obtain" stationary GSP X_{t} with covariance function

$$
R(t)=\operatorname{sech}(t / 2)
$$

Persistence probability for X_{t} decays exponentially with

$$
\theta=-4 \lim _{T \rightarrow \infty} \frac{1}{T} \log \mathbb{P}\left[\sup _{0 \leq t \leq T} X_{t}<0\right] .
$$

It was shown by authors:

- $\theta \in[0.1,0.5]$ (theoretically).
- $\theta \approx 0.1875 \pm 0.01$ (numerically).

Kac polynomials as stochastic process.

Let $a_{0} \sim N(0,1)$, then following Dembo, Poonen, Shao, Zeitouni '02 one can consider $K_{n}(x)$ as a Gaussian Stochastic Process (GSP) with x being a time.

$$
\operatorname{Cov}\left[K_{n}(x), K_{n}(y)\right]=\frac{1-(x y)^{n+1}}{1-x y}
$$

In the limit $n \rightarrow \infty$ one introduces exponential time $x=1-e^{-t}$ and a proper scaling to "obtain" stationary GSP X_{t} with covariance function

$$
R(t)=\operatorname{sech}(t / 2)
$$

Persistence probability for X_{t} decays exponentially with

$$
\theta=-4 \lim _{T \rightarrow \infty} \frac{1}{T} \log \mathbb{P}\left[\sup _{0 \leq t \leq T} X_{t}<0\right]
$$

It was shown by authors:

- $\theta \in[0.1,0.5]$ (theoretically).
- $\theta \approx 0.1875 \pm 0.01$ (numerically).
$-\frac{\log p_{2 n}}{\log n} \rightarrow-4 \theta$.

We study ensemble of random matrices $M_{2 n}$ of size $2 n \times 2 n$ formed by top left minors of Haar distributed orthogonal matrices $O \in O(2 n+1)$.

Truncated random orthogonal matrices.

We study ensemble of random matrices $M_{2 n}$ of size $2 n \times 2 n$ formed by top left minors of Haar distributed orthogonal matrices $O \in O(2 n+1)$.

Figure: Blue dots represent eigenvalues of truncated random orthogonal matrices, while red show roots of Kac polynomials.

Truncated random orthogonal matrices.

We study ensemble of random matrices $M_{2 n}$ of size $2 n \times 2 n$ formed by top left minors of Haar distributed orthogonal matrices $O \in O(2 n+1)$.

$$
O=\left(\begin{array}{cc}
M_{2 n} & \mathbf{u} \\
\mathbf{v}^{T} & a
\end{array}\right),
$$

where \mathbf{u} and \mathbf{v} are column vectors of length $2 n$ and a is a scalar. Let

$$
X=\left(\begin{array}{cc}
l_{2 n}-z M_{2 n} & \mathbf{u} \\
-\mathbf{v}^{T} & z^{-1} a
\end{array}\right)
$$

$\operatorname{det} X=\operatorname{det}\left(I_{2 n}-z M_{2 n}\right)\left(z^{-1} a+\mathbf{v}^{\top}\left(I_{2 n}-z M_{2 n}\right)^{-1} \mathbf{u}\right)=z^{-1} a \operatorname{det}\left(I_{2 n}-z M_{2 n}+z a^{-1} \mathbf{u} \mathbf{v}^{T}\right)$.

$$
\begin{aligned}
& \operatorname{det} X=z^{-1} a \operatorname{det}\left(I_{2 n}-z M_{2 n}^{-T}\right)=z^{-1} a \operatorname{det} M_{2 n}^{-1} \operatorname{det}\left(M_{2 n}-z I_{2 n}\right) \\
& \begin{aligned}
\frac{\operatorname{det}\left(z I_{2 n}-M_{2 n}\right)}{\operatorname{det}\left(z M_{2 n}-I_{2 n}\right)} & =\operatorname{det} M_{2 n}\left(1+z a^{-1} \mathbf{v}^{T}\left(I_{2 n}-z M_{2 n}\right)^{-1} \mathbf{u}\right) \\
& =\operatorname{det} O\left(a+z \mathbf{v}^{T}\left(I_{2 n}-z M_{2 n}\right)^{-1} \mathbf{u}\right)
\end{aligned}
\end{aligned}
$$

For $|z|<1$ one can write the r.h.s. as a series (up to a sign of $\operatorname{det} O$)

$$
F_{2 n}(z)=a+\sum_{k=1}^{\infty} z^{k} \mathbf{v}^{T} M_{2 n}^{k-1} \mathbf{u} \quad " \rightarrow " K_{2 n}(z)
$$

Truncations of random orthogonal matrices.

We start with the full joint distribution of the eigenvalues of $M_{2 n}$. Since $M_{2 n}$ is real and of even size, it has / (with / even) real eigenvalues (and possibly $I=0), \lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{I}$, and $m=n-I / 2$ pairs of complex conjugate eigenvalues $z_{1}=x_{1}+i y_{1}, z_{2}=x_{1}-i y_{1}, \ldots, z_{2 m-1}=x_{m}+i y_{m}, z_{2 m}=x_{m}-i y_{m}$ with $x_{1} \leq x_{2} \leq \ldots \leq x_{m}$. Then ordered eigenvalues of the matrix $M_{2 n}$ conditioned to have I real eigenvalues have joint distribution (Khoruzhenko, Sommers, Zyczkowski, '10)

$$
p^{(1, m)}(\vec{\lambda}, \vec{z})=2^{m} C_{n}|\Delta(\vec{\lambda} \cup \vec{z})| \prod_{j=1}^{\prime} w\left(\lambda_{j}\right) \prod_{j=1}^{2 m} w\left(z_{j}\right)
$$

where C_{n} is a normalization constant

$$
w^{2}(z)=\left(2 \pi\left|1-z^{2}\right|\right)^{-1}
$$

and Δ is a Vandermonde determinant. This yields a Pfaffian structure! The generating function of \mathcal{N}_{n} reads

$$
\left\langle e^{s \mathcal{N}_{n}}\right\rangle_{M_{2 n}}=\left\langle\prod_{i=1}^{2 n} 1-\left(1-e^{s}\right) \chi_{\mathbb{R}}\left(\zeta_{i}\right)\right\rangle_{M_{2 n}}
$$

for $s<0$, where the product runs over all the eigenvalues ζ_{i} 's - both real and complex - of $M_{2 n}$. In above, $\chi_{\mathbb{R}}(z)=1$ if z is real and 0 otherwise and $\langle\cdots\rangle_{M_{2 n}}$ denotes an average over the joint distribution.

Truncations of random orthogonal matrices.

Theorem (Sinclair, '07).
Let $\left\{P_{i}(x)\right\}_{i=0}^{N-1}$ be a set of monic polynomials and $\Psi: \mathbb{R}^{N \times N} \rightarrow \mathbb{R}$ is
(i) constant on similarity classes: $\Psi\left(A X A^{-1}\right)=\Psi(X)$ for all $A \in \mathbb{R}^{N \times N}$
(ii) there exists a function $\psi: \mathbb{C} \rightarrow \mathbb{R}$ such that if D is a diagonal matrix with entries $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}$ then $\Psi(D)=\psi\left(\gamma_{1}\right) \psi\left(\gamma_{2}\right) \cdots \psi\left(\gamma_{N}\right)$.
Then the average over ensemble of random matrices is given by

$$
\langle\Psi\rangle=\mathcal{C}_{N}^{-1} \operatorname{Pf}\left\{\left\langle P_{i} \psi, P_{j} \psi\right\rangle_{\mathbb{R}}+\left\langle P_{i} \psi, P_{j} \psi\right\rangle_{\mathbb{C}}\right\}_{i, j=1}^{N}
$$

Corresponding two skew-symmetric inner products are given by

$$
\begin{aligned}
\langle P, Q\rangle_{\mathbb{R}} & :=\int_{\mathbb{R}^{2}} w\left(\alpha_{1}\right) w\left(\alpha_{2}\right) P\left(\alpha_{1}\right) Q\left(\alpha_{2}\right) \operatorname{sgn}\left(\alpha_{2}-\alpha_{1}\right) d \alpha_{1} d \alpha_{2} \\
\langle P, Q\rangle_{\mathbb{C}} & :=-2 i \int_{\mathbb{C}} w(\beta) w(\bar{\beta}) P(\bar{\beta}) Q(\beta) \operatorname{sgn}(\operatorname{Im}(\beta)) d \lambda_{2}(\beta)
\end{aligned}
$$

Following Forrester, Ipsen-Forrester $P_{2 j}(z)=z^{2 j}, P_{2 j+1}(z)=z^{2 j+1}-\frac{2 j}{2 j+1} z^{2 j-1}$.

Truncations of random orthogonal matrices.

Generating function of \mathcal{N}_{n} can be now computed explicitly

$$
\left\langle e^{s \mathcal{N}_{n}}\right\rangle_{M_{2 n}}=\operatorname{det}_{0 \leq j, k \leq n-1}\left[\delta_{j, k}-\frac{1-e^{2 s}}{\pi(j+k+1 / 2)}\right] .
$$

Top left minor of infinite Hilbert matrix! $H(\lambda)=\left\{(\pi(j+k+\lambda))^{-1}\right\}_{j, k=0}^{\infty}$.

$$
\operatorname{det}\left(\mathbb{I}-\alpha H_{n}\right)=\exp \left\{\operatorname{Tr}\left(\ln \left(\mathbb{I}-\alpha \boldsymbol{H}_{n}\right)\right)\right\}, \text { with } \alpha=\left(1-e^{2 s}\right) .
$$

Theorem (Widom, '66). The $n \times n$ matrix H_{n} is a top left minor of a rescaled semi-infinite Hilbert's matrix H, which has an absolutely continuous spectrum in $[0,1]$ and

$$
\begin{gathered}
\mu_{n, m}:=\operatorname{Tr} H_{n}^{m}=\frac{1}{2 \pi} \int_{0}^{\infty} \operatorname{sech}^{m}\left(\frac{\pi u}{2}\right) d u \log n(1+o(1)), n \rightarrow \infty \\
\left\langle e^{s \mathcal{N}_{n}}\right\rangle_{M_{2 n}}=n^{\frac{1}{2 \pi}} \int_{0}^{\infty} \log \left(1-\left(1-e^{2 s}\right) \operatorname{sech} \frac{\pi u}{2}\right) d u+o(1)
\end{gathered}
$$

For $s<0$, the integral can be calculated explicitly as

$$
\left\langle e^{s \mathcal{N}_{n}}\right\rangle_{M_{2 n}} \sim n^{\psi(s)}, \psi(s)=\frac{1}{8}-\frac{2}{\pi^{2}}\left[\cos ^{-1}\left(\frac{e^{s}}{\sqrt{2}}\right)\right]^{2}
$$

Rigorous asymptotic analysis of Hilsert matrix

- Hilbert's inequality is equivalent to $\left\|H_{n}\right\|<1$.
- Let $\mu_{m}=\lim _{n \rightarrow \infty} \mu_{n, m}$.

$$
\operatorname{det}\left(\mathbb{I}-\alpha H_{n}\right)=-\sum_{k=1}^{\infty} k^{-1} \mu_{n, k} \leq-\sum_{k=1}^{M} k^{-1} \mu_{n, k} \rightarrow-\sum_{k=1}^{M} k^{-1} \mu_{k}, \forall M
$$

- $\operatorname{det}\left(\mathbb{I}-\alpha H_{n}\right)=-\sum_{k=1}^{\infty} k^{-1} \mu_{n, k} \geq \sum_{k=1}^{\infty} k^{-1} \tilde{\mu}_{n, k}$, where $\tilde{\mu}_{n, k}=\operatorname{Tr} \mathbb{P}_{n} H^{k} \mathbb{P}_{n}$.
- H is diagonalizable via Wilson polynomials, and moreover

$$
\operatorname{tr}\left(\mathbb{P}_{n} H^{m} \mathbb{P}_{n}\right)=\int_{0}^{\infty} d x\left(\frac{1}{\cosh (\pi x)}\right)^{m} \frac{2}{\cosh (\pi x)} \sum_{n=0}^{N-1}\left|\hat{P}_{n}\left(x^{2}\right)\right|^{2}
$$

- Uniform asymptotics for Wilson polynomials yield $\operatorname{tr}\left(\mathbb{P}_{n} H^{m} \mathbb{P}_{n}\right) \rightarrow \mu_{m}$.

Analysis for the result.

Now taking $s \rightarrow-\infty$ one obtains the probability that $M_{2 n}$ has no real eigenvalues, using $Q_{0}(1, N)=\operatorname{Prob} .\left(\mathcal{N}_{n}=0\right)=\lim _{s \rightarrow-\infty}\left\langle e^{s \mathcal{N}_{n}}\right\rangle_{M_{2 n}} \sim n^{-3 / 8}$. From the generating function, one can also obtain the cumulants of \mathcal{N}_{n}.

$$
\left\langle N_{t}^{p}\right\rangle_{c} \sim \kappa_{p} \ln t, \kappa_{p}=\frac{2^{p-2}}{\pi^{2}} \sum_{m=1}^{p}(-2)^{m-1} \Gamma^{2}\left(\frac{m}{2}\right) \mathcal{S}_{p}^{(m)}
$$

where $\mathcal{S}_{p}^{(m)}$ is the Stirling number of the second kind. Moreover, for large n and k, with $k / \ln n$ fixed, $p_{k}(n)=\mathbb{P}\left[\mathcal{N}_{n}=k\right]$ takes the large deviation form

$$
p_{k}(n) \sim n^{-\varphi(k / \ln n)}
$$

where the large deviation function $\varphi(x)$ is computed exactly. Its asymptotic behaviours are

$$
\varphi(x) \sim\left\{\begin{array}{l}
\frac{3}{16}+\frac{x}{2} \ln x, x \rightarrow 0 \\
\frac{1}{2 \sigma^{2}}\left(x-\frac{1}{2 \pi}\right)^{2},\left|x-\frac{1}{2 \pi}\right| \ll 1 \\
\frac{\pi^{2}}{8} x^{2}, x \rightarrow \infty
\end{array}\right.
$$

with $\sigma^{2}=1 / \pi-2 / \pi^{2}$.

Diffusion equation with random IC.

Another example studied by Schehr \& Majumdar, Dembo \& Mukherjee is the d-dimensional diffusion equation

$$
\partial_{t} \phi(\mathbf{x}, t)=\Delta \phi(\mathbf{x}, t), \text { with } \mathbf{x} \in \mathbb{R}^{d}, t \in \mathbb{R}_{+}
$$

and initial data $\phi(\mathbf{x}, t=0)$ given by a Gaussian random field, with zero mean and short range correlations

$$
\left\langle\phi(\mathbf{x}, 0) \phi\left(\mathbf{x}^{\prime}, 0\right)\right\rangle=\delta^{d}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

The persistence $p_{0}(t, L)$ is the probability that $\phi(\mathbf{x}, t)$, at some fixed point \mathbf{x} in space with $L=\|\mathbf{x}\|_{d}$, does not change sign up to time t. It takes the scaling form, for large t and large L, with t / L^{2} fixed

$$
p_{0}(t, L) \sim L^{-2 \theta(d)} h\left(L^{2} / t\right),
$$

with $h(u) \rightarrow$ const, when $u \rightarrow 0$ and $h(u) \propto u^{\theta(d)}$ when $u \rightarrow \infty$. Normalized process $X_{t}=\phi(\mathbf{0}, t) /\left\langle\phi(\mathbf{0}, t)^{2}\right\rangle$ is a GSP characterised by its autocorrelation function

$$
C\left(t, t^{\prime}\right)=\left(2 \sqrt{t t^{\prime}} /\left(t+t^{\prime}\right)\right)^{d / 2}, \text { when } L \rightarrow \infty
$$

In terms of logarithmic time $T=\ln t, Y(T)=X\left(e^{T}\right)$ is a Gaussian stationary process with covariance

$$
c(T)=[\operatorname{sech}(T / 2)]^{d / 2}
$$

Numerical simulations showed: $\theta(1)=0.1207 \ldots, \theta(2)=0.1875 \ldots$

Ising spin model.

We consider the semi-infinite Ising spin chain, whose configuration at time t is given by $\left\{\sigma_{i}(t)\right\}_{i \geq 0}$, with $\sigma_{i}(t)= \pm 1$. Initially, $\sigma_{i}(0)= \pm 1$ with equal probability $1 / 2$ and, at subsequent time, the system evolves according to the Glauber dynamics at $T=0$

time
Derrida, Hakim, Pasquier ' 96 used mapping of q-states Potts model onto coalescing random walks to study the fraction $r(q, t)$ of spins which never flip up to time t and showed it decays like a power law

$$
r(q, t) \sim t^{-\theta(q)}
$$

where

$$
\theta(q)=-\frac{1}{8}+\frac{2}{\pi^{2}}\left[\arccos \frac{2-q}{\sqrt{2} q}\right]^{2}, \quad \text { and } \theta(2)=\frac{3}{8}
$$

Stochastic models. Final remarks.

Thank you for your attention!

