
Introduction
Power Spectrum Analysis for Random Matrices

Power Spectrum for Zeros of Riemann Zeta Function
Conclusion and Open Questions

Power Spectrum Analysis and Zeros of Riemann Zeta
Function

Roman Riser

University of Haifa

joint work with Eugene Kanzieper (HIT) and Vladimir Osipov (UCI)

Random Matrices, Integrability and Complex Systems
Research Workshop of The Israel Science Foundation

Yad Hashmona, 3-8 October 2018

1 / 34



Introduction
Power Spectrum Analysis for Random Matrices

Power Spectrum for Zeros of Riemann Zeta Function
Conclusion and Open Questions

1 Introduction
Classical Billiards
Poisson vs. Wigner-Dyson statistics
Power Spectrum Analysis of Quantum Spectra
Spectral Form Factor Approximation

2 Power Spectrum Analysis for Random Matrices
Circular Unitary Ensemble
Representation of the Power Spectrum
Large n asymptotics of Power Spectrum
Small Frequencies ω = O(n−1)

3 Power Spectrum for Zeros of Riemann Zeta Function
Semi-classical Theory
Integrated Power Spectrum
Universality of Power Spectrum

4 Conclusion and Open Questions
Conclusions
Open Questions

2 / 34



Introduction
Power Spectrum Analysis for Random Matrices

Power Spectrum for Zeros of Riemann Zeta Function
Conclusion and Open Questions

Classical Billiards
Poisson vs. Wigner-Dyson statistics
Power Spectrum Analysis of Quantum Spectra
Spectral Form Factor Approximation

Trajectory of Classical Billiards

(a) (b) (c)

(a) & (b): c© Bäcker 2007. (c): c© Dettmann & Georgiou 2011.

Billiards with (a) circular shape (b) cardioid shape (c) mushroom shape
boundaries. They show (a) regular geodesics, (b) chaotic geodesics and
(c) a mixed phase space.
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In quantum spectra, fluctuations are known to exhibit a high degree of
universality which reflects the regular or chaotic nature of the underlying
classical dynamics.
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(a) & (b): c© Bäcker 2007. (c): c© Dettmann & Georgiou 2011.

Bohigas-Giannoni-Schmit (BGS) conjecture (1984):
Statistical properties of a generic quantum system, whose classical limit
is fully chaotic, coincide with those of random matrix theory.
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Quantum System (Wave Billiard)

Quantum Analog: Discrete Energy Levels

c© Bäcker 2007.

Level spacing distribution for (a) circle billiard (100000 eigenvalues) and
(b) cardioid billiard (11000 eigenvalues). On observes good agreement
with the expected behaviour of a Poissonian random process and of the
GOE, respectively.
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Alternative characterization by the Power spectrum analysis of the
Quantum spectra has been proposed in [1]. Long eigenlevel sequences
have been interpreted as discrete-time random processes.

Power spectrum

Sn(ω) =
1
n

n∑
`=1

n∑
m=1

〈δε`δεm〉eiω(`−m)

δε` = ε` − 〈ε`〉

[1] Relaño, Gómez, Molina, Retamosa, Faleiro 2002
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have been interpreted as discrete-time random processes.

Power spectrum

Sn(ω) =
1
n

n∑
`=1

n∑
m=1

〈δε`δεm〉eiω(`−m)

δε` = ε` − 〈ε`〉
Energy levels E` of the quantum system gets ordered and put in
sequences of consecutive levels of length n.
Unfolded eigenlevels ε1 ≤ · · · ≤ εn fluctuate around their average
positions 〈ε`〉 = `∆ with the mean level spacing ∆ being set to unity,
∆ = 1.
Average is taken over different sequences.

[1] Relaño, Gómez, Molina, Retamosa, Faleiro 2002
5 / 34



Introduction
Power Spectrum Analysis for Random Matrices

Power Spectrum for Zeros of Riemann Zeta Function
Conclusion and Open Questions

Classical Billiards
Poisson vs. Wigner-Dyson statistics
Power Spectrum Analysis of Quantum Spectra
Spectral Form Factor Approximation

Alternative characterization by the Power spectrum analysis of the
Quantum spectra has been proposed in [1]. Long eigenlevel sequences
have been interpreted as discrete-time random processes.

Conjecture [1]
If classical analog of a quantum system is fully integrable: Power
Spectrum shows 1/ω2 behavior.
If classical analog is completely chaotic: Power Spectrum is
characterized by 1/ω noise.

This is expected in the large n limit for small frequencies, i.e. when
ω � 1.

[1] Relaño, Gómez, Molina, Retamosa, Faleiro 2002
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Experiment for Regular Case: Rectangular Billiard

Sn(ω = 2πk/n)

∼ 1
k2

c© Relaño Gómez Molina Retamosa Faleiro 2004
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The 1/ω behavior in the chaotic case and the 1/ω2 behavior for the
integrable case, was obtained in [2] by the form factor approximation.
They claim that the large n asymptotic of the power spectrum can be
described by the form factor K (ω) of the system by the relation

Form Factor Approximation

lim
n→∞

Sn(ω) = ω−2K (ω/(2π)),

where the spectral form factor of a quantum system is given by

K (τ) =
1
n

(〈 n∑
`=1

n∑
m=1

e2iπτ(ε`−εm)
〉
−
〈 n∑
`=1

e2iπτε`
〉〈 n∑

m=1

e−2iπτεm
〉)

.

[2] Faleiro Gómez Molina Muñoz Relaño Retamosa 2004
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Integrable Case

In the regular case we have Poisson statistics for the level spacing.
Power spectrum can be calculated directly

Power spectrum for Regular Case

lim
n→∞

Sn(ω = 2πk/n)

n2 =
1

2π2k2 , for k ∈ N, k � n

10 / 34
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Dyson’s CUE. The circular unitary ensemble on n × n matrices is
defined by the joint probability density function on the eigen-angles
0 ≤ θk < 2π

Pn(θ1, . . . , θn) =
1
n!

∣∣∣∣∆({eiθj
}n

j=1

)∣∣∣∣2
where ∆(z1, . . . , zn) =

∏
1=j<k=n(zk − zj) is the Vandermonde

determinant.
The p-point correlation function is given by the formula

R(n)
p (θ1, . . . , θp) = det

1≤j,k≤p

[
Sn(θj − θk )

]
, Sn(θ) =

sin(n θ/2)

sin(θ/2)

11 / 34



Introduction
Power Spectrum Analysis for Random Matrices

Power Spectrum for Zeros of Riemann Zeta Function
Conclusion and Open Questions

Circular Unitary Ensemble
Representation of the Power Spectrum
Large n asymptotics of Power Spectrum
Small Frequencies ω = O(n−1)

CUE with fixed charge at 0. Ensemble of (n + 1)× (n + 1) random
unitary matrices, such that one of the eigen-angles is fixed and equal
to 0

P̃n(θ1, . . . , θn) = Pn+1(θ1, . . . , θn |0)

=
1

(n + 1)!

∣∣∣∣∆({eiθj
}n

j=1

)∣∣∣∣2 · n∏
j=1

∣∣∣1− eiθj

∣∣∣2 .
Mean level spacing: ∆n = 2π

n+1

Extra ”charge“ at zero tunes eigenlevel fluctuations:

〈θk 〉 = k∆n, k = 1, . . . ,n
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to 0

P̃n(θ1, . . . , θn) = Pn+1(θ1, . . . , θn |0)

=
1

(n + 1)!

∣∣∣∣∆({eiθj
}n

j=1

)∣∣∣∣2 · n∏
j=1

∣∣∣1− eiθj

∣∣∣2 .
The mean eigenlevel density for this ensemble coincides with the
two-point correlation function of CUE of the size (n + 1)

ρ̃n(θ) = (n+1)

(
1− sin2 ((n + 1)θ/2)

(n + 1)2 sin2 (θ/2)

)
=

R(n+1)
2 (0, θ)

R(n+1)
1 (0)

, θ ∈ (0,2π).
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Definition: Power Spectrum

Sn(ω) =
1

(n + 1)∆2
n

n∑
k ,`=1

〈θkθ`〉c zk−`, z = eiω,

where the connected part is 〈θkθ`〉c =〈θkθ`〉−〈θk 〉 〈θ`〉 and the mean level
spacing is ∆n = 2π/(n + 1).
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Definition: Power Spectrum

Sn(ω) =
1

(n + 1)∆2
n

n∑
k ,`=1

〈θkθ`〉c zk−`, z = eiω,

where the connected part is 〈θkθ`〉c =〈θkθ`〉−〈θk 〉 〈θ`〉 and the mean level
spacing is ∆n = 2π/(n + 1).

ω = 2πk/(n + 1) with k ∈ Z: power spectrum can be expressed in
terms of the discrete Fourier transform δ̂k of deviations from mean of
the eigenlevels δk = θk − 〈θk 〉, i.e.

Sn(ω = 2πk
n+1) =

〈
|δ̂k |2

〉
where δ̂k =

1√
n + 1

n∑
j=1

δj e−2iπkj/(n+1).
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Definition: Power Spectrum

Sn(ω) =
1

(n + 1)∆2
n

n∑
k ,`=1

〈θkθ`〉c zk−`, z = eiω,

where the connected part is 〈θkθ`〉c =〈θkθ`〉−〈θk 〉 〈θ`〉 and the mean level
spacing is ∆n = 2π/(n + 1).

From the definition: Obvious symmetries
Sn(ω + 2π) = Sn(ω)

Sn(ω) = Sn(−ω)

Nyquist frequency is ω = π.
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Representation of Power Spectrum (for stationary spacings)

Sn(ω) = 2
n Re

(
z
∂

∂z
− n − 1−z−n

1−z

)
z

1−z

∫ ∞
0

dφφ [Φn(1− z, φ)− zn]− S(0)
n (ω),

where
S(0)

n (ω) =
1
n

∣∣∣∣1− (n + 1)zn + nzn+1

(1− z)2

∣∣∣∣2 ,
and

Φn(ζ, φ) =
n∑
`=0

(1− ζ)`En(`;φ)

= 1
(n+1)!

n∏
j=1

(∫ 2π

0

dθj

2π
− ζ

∫ φ

0

dθj

2π

)∣∣∣1− eiθj

∣∣∣2 ∣∣∣∣∆n

({
eiθk
}n

k=1

)∣∣∣∣2 .
Φn(ζ, ε) is the generating function of En(`; ε), the probability to find
exactly ` eigenlevels below the energy ε.
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Painlevé VI representation. Integrals of the latter form have been
studied [3] and its solution is given by

Φn(ζ, φ) = exp

[
−
∫ ∞

s=cot(φ/2)

dt
1 + t2 (σn(t) + t)

]
,

where σn(t) = σn(ζ, t) satisfies the Painlevé VI equation in σ-form(
(1 + t2)σ′′n

)2
+ 4σ′n(σn − tσ′n)2 + 4(σ′n + 1)2(σ′n + (n + 1)2) = 0

[3] Forrester Witte 2004
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−
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dt
1 + t2 (σn(t) + t)

]
,

where σn(t) = σn(ζ, t) satisfies the Painlevé VI equation in σ-form(
(1 + t2)σ′′n

)2
+ 4σ′n(σn − tσ′n)2 + 4(σ′n + 1)2(σ′n + (n + 1)2) = 0

with ζ-dependent boundary condition

σn(t) = −t +
n(n + 1)(n + 2)ζ

3πt2 +O(t−4) as t →∞.

[3] Forrester Witte 2004
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Representation as Toeplitz Determinant with Fisher-Hartwig Singularities

Φn(ζ, φ) = detj,k=1,...,n[1n − ζβjk (φ)],

where βjk (φ) = [A−1/2 B(φ)A−1/2]jk ,

Ajk =

∫ 2π

0

dθ
2π

(1− cos θ)eiθ(j−k), Bjk (φ) =

∫ φ

0

dθ
2π

(1− cos θ)eiθ(j−k).

The asymptotics of such (and more general) Toeplitz determinants
detj,k=1,...,n

[
Aj−k (φ)− ζBj−k (φ)

]
with Fisher-Hartwig singularities

has been studied in large details (see for example [4]).
Uniform asymptotics for φ at the endpoints of the interval (0,2π) has
been discussed in [5] where it is given as a solution of a Painlevé V
equation.

[4] Deift Its Krasovsky 2011
[5] Claeys Krasovsky 2015 16 / 34
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With the help of the later, we find the following asymptotics

Φn(ζ, φ) = eiβφ
(

sin(φ/2)

φ/2

)−2β2

exp
(∫ −inφ

0

ds
s
σ(s)

)
+ o(1) (n→∞)

where β = ω/(2π) < 1/2
σ(s) fulfills the σ-form of the Painlevé V equation

s2(σ′′)2 =
(
σ − sσ′ + 2(σ′)2

)2
− 4(σ′)2

(
(σ′)2 − 1

)

with boundary conditions

σ(s) = −βs − 2β2 +
sγ(s)

1 + γ(s)
+O(|s|−1+2β), s → −i∞,

σ(s) = O(|s| log |s|), s → −i0+,

where γ(s) =
1
4

∣∣∣s
2

∣∣∣2(−1+2β)
e−i|s|eiπ Γ(2− β)Γ(1− β)

Γ(1 + β)Γ(β)
.
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Result for Large Frequencies: ω = 2πβ = O(1)

Solution is given in term of previous Painlevé V equation [6]

lim
n→∞

Sn(ω) = Aβ Im

[∫ ∞
0

dλ
eiβλ

λ2β2−1

[
exp
(∫ −iλ

−i∞
ds
σ(s) + βs + 2β2

s

)
−1
]

+Bβ

]

Aβ =
Gβ

(4π2) sin(πβ)
, Bβ = − e−iπβ2

β2−2β2 Γ(2− 2β2),

Gβ =
2∏

j=1

G(j + β)G(j − β),

where Γ(z) denotes the gamma function and G(z) the Barnes
G-function.
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0

dλ
eiβλ

λ2β2−1

[
exp
(∫ −iλ

−i∞
ds
σ(s) + βs + 2β2

s

)
−1
]

+Bβ

]

Solution holds if 0 < β < 1/2 (β = 1/2 is the Nyquist frequency)

[6] Osipov, Kanzieper, R. 2017
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small β Ansatz: Result

We can analyze the integral for small β > 0 and we find the explicit
result:

Result

lim
n→∞

Sn(ω = 2πβ) =
1

4π2β
+
β logβ

2π2 +
β

12
+O(β2 logβ).

One can see that it contains a correction to the 1/ω law.

19 / 34
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Figure: The figure shows difference of power spectrum from (2πω)−1 plotted vs.
ω. Red line represents our prediction by the the Painlevé solution. Black dashed
line in the inline plot gives the small β expansion of the former. Green line is the
form factor approximation. Blue crosses is the numerical simulation for unfolded
eigenvalues of CUE matrcies with n = 200 and M = 4× 106 realizations.
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Determinant in Fredholm Form

For small frequencies, i.e. if ζ = 1− eiω is of order o(1) as n goes to
infinity, we may approximate Φn using the following

detj,k=1,...,n[1n − ζβjk (φ)] = exp [trn log(1n − ζβ(φ))]

= exp
(
−
∞∑
`=1

ζ`

`
trnβ

`(φ)
)
,

where

trnβ
`(φ) =

∫ φ

0

dθ1

2π
. . .

∫ φ

0

dθ`
2π

κn(θ1, θ2)κn(θ2, θ3) . . . κn(θ`, θ1)

and κn(θ, θ′) is the reproducing kernel in an ensemble of n − 1 charges
on the unit circle in presence of one fixed charges located at θ = 0.
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Result for Power Spectrum of Tuned CUE: Asymptotics for ω = O(n−1)

For ω = 2πk/n with k fixed as n goes to infinity, the power spectrum is
asymptotically given by

Sn(ω = c/(n + 1)) =
(1− cos c)n log n

π2c2

+
n

π2c2

{
(cos c − 1)

[
π2

6
− 1 +

d
dc

(
cψ
( c

2π

))]
+
π

2
(c − sin c)

}
+ o(n)

ψ is the digamma function
1/ω law: If ω = 2πk/(n + 1) with k ∈ Z, the power spectrum reduces
in leading order to

lim
n→∞

Sn(ω) =
1

2πω
.
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Plot shows the convergence of Sn(ω)/n− (1− cosω) log n/(π2ω2) for the
tuned CUE. The dashed line is term of order n in our asymptotic formula.
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In the following analysis:

Levels Ek are chosen by sequences of high lying consecutive zeros
of the Riemann Zeta function, ζ(1/2 + iEk ) = 0.
Unfolded by theoretical density prediction given by
ρ(E) = 1

2π log(E/(2π)).
For the numerical analysis we use data of up to 10 billion zeros of
the Riemann Zeta function around E ≈ 1022. [7] This set of zeros
has been split in M sequences of length n of consecutive zeros.

[7] We are thankful to Andrew Odlyzko who provided us with the data.
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Semi-classical analysis

If one plugs the form factor K (ω) for the zeros of the Riemann Zeta
function [8,9] into the form factor approximation of the power spectrum
S∞(ω) = ω−2K (ω/(2π)) we get

S∞(ω) =
1

2π

∑
m≥1

∑
p prime

1
m2pm δ

(
ω − m log p

ρ(E)

)
. (1)

One notices that the weights of the delta distribution with m = 1 are
much larger than the ones with m > 1.
Smoothing the result in (1) and taking the limit E →∞ brings the
1/ω law.

[8] Berry Keating 1999
[9] Connors Keating 2001
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Figure: The blue line shows the numerical result for the power spectrum of the
zeros of the Riemann Zeta function with n = 10000. The dashed lines mark the
positions of the delta distributions from (1). Contributions from different m are
marked with different colors. 26 / 34
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Semi-classical analysis

If one plugs the form factor K (ω) for the zeros of the Riemann Zeta
function [??,??] into the form factor approximation of the power spectrum
S∞(ω) = ω−2K (ω/(2π)) we get

S∞(ω) =
1

2π

∑
m≥1

∑
p prime

1
m2pm δ

(
ω − m log p

ρ(E)

)
. (2)

Smoothing by Integration

By integration of the power spectrum we define In(ω) =
∫ ω

0 Sn(τ)dτ .

Delta distributions in (2) become step functions.
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Figure: Integrated power spectrum In(ω) following from (2) (dashed) and for the
numerical computation with n = 1000 (green) and n = 10000 (blue). 28 / 34
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Figure: The plot shows δSn(ω) = Sn(ω)− (2πω)−1. The blue lines show the
numerical result for the zeros of the Riemann Zeta function with n = 10000
averaged over M = 100000 samples. The red lines correspond to the analytical
Painlevé solution we got for the CUE. The green zero lines indicate the 1/ω law.
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The power spectrum contains statistical information about short- and
long-wide correlations. While the simple form factor approximation
gives the 1/ω behavior straightforward, there is a deviation which is
present in the CUE case as well as for the zeros of Riemann Zeta
function.

Integrated Power Spectrum

For smoothing the fluctuations we define

δJn(ω) =

∫ π

ω
δSn(τ)dτ

.

We integrate from ω to the Nyquest frequency ωNy = π since we are
mainly interested in large frequencies and to avoid the singularity
from 1/ω.
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Figure: The plot shows δJn(ω). The blue lines show the numerical result for the
zeros of the Riemann Zeta function with n = 10000 averaged over M = 100000
samples. The red line correspond to the analytical Painlevé solution we got for
the CUE. The green zero lines indicate the 1/ω law. 31 / 34
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For finite n, we found an exact representation of the power spectrum
in terms of a Painlevé VI transcendent.
The large n asymptotics of the power spectrum for random matrices
we have expressed in a parameter free form with help of a solution
of a Painlevé V equation.
For small frequencies 0 < ω � 1 it shows 1/ω behavior.
We have found a correction to the 1/ω law which is also present in
the behavior of the zeros of the Riemann Zeta function.
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Conclusions
Open Questions

GOE, GSE: β = 1, β = 4
β-ensemble: Transition from β = 1 to β = 2
Cross-over from Poisson statistic to Wigner-Dyson
Can we find the corrections described by Forrester and Mays (2015)
in the power spectrum for the Riemann Zeta function? Maybe data of
more zeros or zeros around a lower E is needed?
Conjecture for global behavior of our Painlevé V solution

33 / 34



Introduction
Power Spectrum Analysis for Random Matrices

Power Spectrum for Zeros of Riemann Zeta Function
Conclusion and Open Questions

Conclusions
Open Questions

Additionally, the study of the study of the power spectrum for the tuned
CUE let us find the following conjecture related to the global behavior of
the Painlevé V solution,

Conjecture

Gβ

∫ ∞
0

dλ
eiβλ

λ2β2

[
exp

(∫ −iλ

−i∞
ds

σ(s) + βs + 2β2

s

)
− 1
]

+ Cβ =
iπ

sin(βπ)

Gβ =
2∏

j=1

G(j + β)G(j − β)

Cβ = ie−iπβ2
β−1+2β2

Γ(1− 2β2)
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Additionally, the study of the study of the power spectrum for the tuned
CUE let us find the following conjecture related to the global behavior of
the Painlevé V solution,

Conjecture

Gβ

∫ ∞
0

dλ
eiβλ

λ2β2

[
exp

(∫ −iλ

−i∞
ds

σ(s) + βs + 2β2

s

)
− 1
]

+ Cβ =
iπ

sin(βπ)

Motivation:

(n + 1)

∫ 2π

0

dφ
2π

Φn(ζ;φ) =
1− zn+1

1− z
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End of Talk

Thank you for your attention!
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