
Product matrix processes

E. Strahov
Department of Mathematics,

The Hebrew University of Jerusalem

Joint work with Alexei Borodin and Vadim Gorin

E. Strahov Department of Mathematics, The Hebrew University of JerusalemProduct matrix processes



1. Discrete-time determinantal
processes in RMT
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Example 1. Sums of independent GUE (N) matrices

GUE (N):

P(H)dH = const e−
1
2
TrH2

N∏
i=1

dHi ,i

∏
1≤i<j≤N

dHR
i ,jdH

I
i ,j ,

where H∗ = H , N × N , Hi ,j = HR
i ,j + iH I

i ,j .

Set H (l) = H1 + . . . + Hl ; H1, . . ., Hl -independent
GUE (N) matrices.(
x

(l)
1 , . . . , x

(l)
N

)
-eigenvalues of H (l).
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The sum matrix process
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Theorem

Configurations {(
l , x

(l)
j

)
|l ≥ 1, 1 ≤ j ≤ N

}
form a determinantal point process on N× R. Its correlation
kernel can be written as

KN (r , x ; s, y) = − 1

2
1
2 (s − r)

1
2π

1
2

e−
(x−y)2

2(s−r) 1s>r

+
e−

y2

2s

(2πs)
1
2

N−1∑
k=0

1

k!

( r

4s

) k
2
Hk

(
x

2
1
2 r

1
2

)
Hk

(
y

2
1
2 s

1
2

)
,

where {Hk(x)}∞k=0 are the Hermite polynomials.
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Example 2. The minor process (Johansson, Nordenstam)

H (1) = H1,1; H (2) =

(
H1,1 H1,2

H2,1 H2,2

)
;

H (3) =

 H1,1 H1,2 H1,3

H2,1 H2,2 H2,3

H3,1 H3,2 H3,3

 ; . . .

H (l) ∈ GUE (l);(
x

(1)
1 , . . . x

(l)
l

)
-eigenvalues of H (l).
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The minor process
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Theorem (Johansson, Nordenstam)

Point configurations

{
(
l , x

(l)
j

)
|l ≥ 1, 1 ≤ j ≤ l}

form a determinantal point process on N× R.

Its correlation kernel can be written in terms of
the Hermite polynomials.
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2. Product matrix processes
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Definition

Gl =
(
g

(l)
i ,j

)
1≤i≤n+νl
1≤j≤n+νl−1

; l ∈ {1, 2, . . .} ;

g
(l)
i ,j -complex random variables; ν0 = 0; νl ≥ 0.

Yl = (Gl · . . . · G1)∗ (Gl . . .G1)-n × n matrix;(
y l1, . . . , y

l
n

)
-eigenvalues of Yl .

Configurations
{(

l , y lj
)
|l ≥ 1, 1 ≤ j ≤ n

}
form

a product matrix process.
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The product matrix process
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Theorem

Assume that g
(l)
i ,j are i.i.d standard complex Gaussian variables.

Then the product matrix process is determinantal. Its
correlation kernel can be written as

Kn (r , x ; s, y) = −1

x
G s−r ,0

0,s−r

(
−

νs+1, . . . , νr

∣∣∣∣yx
)

+
1

(2πi)2

− 1
2

+i∞∫
− 1

2
−i∞

du

∮
Σn

dt

∏s
j=0 Γ (u + νj + 1) Γ (t − n + 1)∏r
j=0 Γ (t + νj + 1) Γ (u − n + 1)

x ty−u−1

u − t
,

where Gm,0
0,m

(
−

ν1, . . . , νm

∣∣∣∣x) denotes the G -Meijer

function.
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The integration contours
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Remarks

(a) If r = s = 1, we obtain the correlation kernel for the
Laguerre ensemble

const ·

(
n∏

i=1

xν1
i e−xi

)
42 (x1, . . . , xn) dx1 . . . dxn,

where 4 (x1, . . . , xn) =
∏

1≤i<j≤n
(xj − xi).

(b) If r = s = m, we obtain the correlation kernel for the
(squared) singular values of Gm · . . . ·G1, where G1, . . ., Gm are
independent matrices with i.i.d standard complex Gaussian
entries (Akemann, Ipsen, Kieburg; Kuijlaars, Zhang).
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Product matrix processes with truncated unitary matrices

• U1, U2, . . ., Up-independent Haar distributed unitary matrices;
• Size (Uk) = mk ×mk , 1 ≤ k ≤ p.
• Truncation of unitary matrices:

Uk =



U
(k)
1,1 . . . U

(k)
1,n+νk−1

U
(k)
1,n+νk−1+1 . . . U

(k)
1,mk

...

U
(k)
n+νk ,1

. . . U
(k)
n+νk ,n+νk−1

U
(k)
n+νk ,n+νk−1+1 . . . U

(k)
n+νk ,mk

U
(k)
n+νk+1,1 . . . U

(k)
n+νk+1,n+νk−1

U
(k)
n+νk+1,n+νk−1+1 . . . U

(k)
n+νk+1,mk

...

U
(k)
mk ,1

. . . U
(k)
mk ,n+νk−1

U
(k)
mk ,n+νk−1+1 . . . U

(k)
mk ,mk



→ Tk =


U

(k)
1,1 . . . U

(k)
1,n+νk−1

...

U
(k)
n+νk ,1

. . . U
(k)
n+νk ,n+νk−1

 .
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Theorem

• Yl = (Tl . . .T1)∗ (Tl . . .T1) -n × n matrix;(
y l

1, . . . , y
l
n

)
-eigenvalues of Yl .

• Configurations

{(
l , y l

j

)∣∣∣∣l ≥ 1, 1 ≤ j ≤ n

}
form a product

matrix process with truncated unitary matrices.
• Claim. The product matrix process with truncated unitary
matrices is determinantal. Its correlation kernel can be written
as

Kn (r , x ; s, y) = −1

x
G s−r ,0
s−r ,s−r

(
mr+1 − n, . . . , ms − n
νr+1, . . . , νs

∣∣∣∣yx
)

1s>r

+
1

(2πi)2

∮
Ct

dt

∮
Cζ

dζ

s∏
a=0

Γ (νa + ζ + 1)
r∏

a=0
Γ (ma − n + t + 1)

r∏
a=0

Γ (νa + t + 1)
s∏

a=0
Γ (ma − n + ζ + 1)

x ty−ζ−1

ζ − t
.

• r = s - Kieburg, Kuijlaars and Stivigny formula.
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The integration contours

        

0 1 1n)(...,),1( 11 nm  

)(),...,1( nmss  

tC
C

E. Strahov Department of Mathematics, The Hebrew University of JerusalemProduct matrix processes



3. Product matrix processes as
continuous limits of the Schur

processes
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Symmetric functions

Λ-algebra of symmetric functions.

The quotient

sλ = sλ (x1, . . . , xn) =
det
(
x
λj+n−j
i

)n
i ,j=1

det
(
xn−ji

)n
i ,j=1

is called the Schur function in variables x1, . . ., xn
corresponding to the Young diagram λ, and {sλ} is a
basis in Λ.

A specialization % of Λ is an algebra homomorphism of Λ
to C. A specialization % of Λ is called nonnegative if the
Schur functions get nonnegative values.
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Definition

Let p be a natural number, and let %+
0 , . . ., %+

p−1, %−1 , . . ., %−p
be nonnegative specializations of Λ. The probability measure

Prob
(
λ(1), µ(1), . . . , λ(p−1), µ(p−1), λ(p)

)
=

1

ZSchur
sλ(1)

(
%+

0

)
sλ(1)/µ(1)

(
%−1
)
sλ(2)/µ(1)

(
%+

1

)
. . . sλ(p−1)/µ(p−1)

(
%−p−1

)
sλ(p)/µ(p−1)

(
%+
p−1

)
sλ(p)

(
%−p
)

is called the Schur process (of rank p). Here ZSchur is a
normalization constant.

E. Strahov Department of Mathematics, The Hebrew University of JerusalemProduct matrix processes



The point configurations

L (λ) =
{(

1, λ
(1)
i − i

)}∞
i=1
∪ . . . ∪

{(
p, λ

(p)
i − i

)}∞
i=1

define a point process on {1, . . . , p} × Z.

Z

Z

Z

Z

1)1(

1 2)1(

2 

1)2(
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2 

2)(

2 p 1)(
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The Okounkov-Reshetikhin formula

Theorem

The point process is determinantal. Its correlation kernel can be
written as

KSchur (r , x ; s, y)

=
1

(2πi)2

∮
Σz

dz

zx+1

∮
Σw

dw

w y+1

1

zw − 1

p∏
i=r

H
(
%−i ; z

) s−1∏
j=0

H
(
%+
j ;w

)
r−1∏
j=0

H
(
%+
j ; z−1

) p∏
i=s

H
(
%−i ;w−1

) ,

where H (%; z) :=
∞∑
k=0

hk(%)zk , hk(%) := s(k)(%).
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The choice of integration contours depends on the time
parameters r , s:
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Product matrix processes as limits of the Schur process

Assume that the specializations of the Schur process are
defined by

%+
j−1 =

(
e−(1+νj)ε, . . . , e−(mj−n)ε

)
, 1 ≤ j ≤ p,

%−p =
(

1, e−ε, . . . , e−(n−1)ε
)
,

and all specializations %−1 , . . . , %
−
p−1 are trivial.

Then the Schur process lives on Young diagrams with less
than n rows.

Set

x
(l)
j (ε) = e−ελ

(l)
j ; 1 ≤ j ≤ n; 1 ≤ l ≤ p.
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Theorem

As ε→ 0, the point process formed by{(
j , x ji (ε)

)∣∣∣∣j = 1, . . . , p; i = 1, . . . , n

}
(where x ji (ε) = e−ελ

(j)
i ) converges to the product matrix process

with truncated unitary matrices T1, . . ., Tp. The product matrix
process is formed by the eigenvalues of
(Tl · . . . · T1)∗ · (Tl · . . . · T1), where 1 ≤ l ≤ p.

1U

2U

pU

1T

2T

pT

1m

1m

2m

2m

pm

pm

n

1n

2n

1n

1 pn 

pn 
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4. Product matrix processes as limits
of plane partitions
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Plane partitions

1
1 1

1
1

1 1 1 1

2
2

2

2

3

4 4

4 4 2 1 1 1 1

3 2 1

2 2 1

1 1

1

A

B

i

j

Definition

A plane partition Π with support A× B is a filling of all boxes of
A× B by positive integers such that Πi ,j ≥ Πi+1,j and
Πi ,j ≥ Πi ,j+1.
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A plane partition as a sequence of Young diagrams

4 4 2 1 1 1 1

3 2 1

2 2 1

1 1

1

i

j

)1(

)2(

)3(

)4(

)5(
)6( )7( )8( )9( )10( )11(

)1(

)2(

)3(

)4(

)5(

)6(

)7(

)8(

)9(

)10(

)11(

E. Strahov Department of Mathematics, The Hebrew University of JerusalemProduct matrix processes



Product matrix processes as limits of plane partitions

Assume that Π is a random plane partition with support
A× B,

Prob {Π} =
qVolume(Π)∑

Π

qVolume(Π)
, 0 < q < 1.

(Here the sum is over all plane partitions with support A×B.)(
λ(1), λ(2), . . .

)
-sequence of Young diagrams associated with

Π.

1 ≤ α1 < . . . < αp ≤ A, q(ε) = e−ε, ε > 0.

Set

x ij (ε) = e−ελ
(αi )

j , 1 ≤ j ≤ B, 1 ≤ i ≤ p.
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The particle configuration associated with a random plane
partition
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Theorem

As ε→ 0, the point process formed by{(
i , x ij (ε) = e−ελ

(αi )

j

)∣∣∣∣i = 1, . . . , p; j = 1, . . . ,B

}
converges to the product matrix process formed by eigenvalues of
(Tl . . .T1)∗ (Tl . . .T1), where 1 ≤ l ≤ p, and T1, . . ., Tl are
truncated unitary matrices.

1U

2U

pU

1T

2T

pT

BA

BA

11  BA

11  BA

B

11  BA

11  BA

21  BA

11  pBA 

11  pBA  11  pBA 

pBA  1
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5. Product matrix processes and last
passage percolation problems
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Up/right paths through arrays of random variables

11  nm

22  nm

pp nm 
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,
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The last passage time

T (1),T (2), . . . ,T (p)-p arrays of independent random variables;
size(T (1)) = (m1 − n − ν1)× n, . . .,
size(T (p)) = (mp − n − νp)× n.

Π-set of up/right paths from (1, 1) to (n,K ),
K = m1 − n − ν1 + . . .+ mp − n − νp.

The last passage time τK ,n from (1, 1) to (n,K ) is defined
by

τK ,n = max
π∈Π

 p∑
l=1

∑
(il ,j)∈π

T
(l)
il ,j


T

(l)
il ,j

is the exponential random variable with the parameter
(νl + il + j − 1), where 1 ≤ l ≤ p, 1 ≤ il ≤ ml − n − νl , and
1 ≤ j ≤ n.
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Theorem

Assume that as n→∞, mj − n→∞, for j = 1, . . . , p. Then

lim
n→∞

Prob

τK ,n ≤ log n +

p∑
j=1

log (mj − n)− log s




= det

(
1−K

∣∣∣∣
L2(0,s)

)
,

where the kernel K(x , y) of K is the Kuijlaars-Zhang hard edge
scaling limit for the product of p independent Gaussian
matrices,

K(x , y) =
1

(2πi)2

− 1
2

+i∞∫
− 1

2
−i∞

ds

∫
Σ

dt

p∏
j=0

Γ (s + νj + 1)

Γ (t + νj + 1)

sinπs

sinπt

x ty−s−1

s − t
.
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