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MBL in a quantum dot
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5 9> lis conductance of the dot (internally screened Coloumb)

B. Altshuler, Y. Gefen, A. Kamenev, and L. Levitov (1997)

Typical many-body state of energy E has N ~ /FE/A quasiparticles, with
characteristic energy of each particle T'= v EA

Delocalization in the Fock space with £ Numerics
Jacquod, Shepelyansky (1997)
Ec ~ 92/3A Georgeot, Shepelyansky (1997)

Leyronas, Silvestrov, Beenakker (2000)
Jacquod, Varga (2002)
Gornyi, Mirlin, Polyakov, Burin (2017) Rivas, Mucciolo, Kamenev (2002)



Modelling Fock space

GOE can meaningfully be used in predicting spectral fluctuation proper-
ties of nuclei and other systems governed by two—body interactions (atoms and
molecules). Nonetheless, embedded ensembles rather than GRTM would offer
the proper way of formulating statistical nuclear spectroscopy. Unfortunately,
an analytical treatment of the embedded ensembles is still missing.

Guhr, Miuller-Groeling, Weidenmuller, 1997

Interacting problem: hopping over certain hierarchical sparse lattice

Cayley tree? NO: boundary is absent in the F'S

Random Regular Graph (eka SRM)? BETTER, but number of fluctuators
is very different: InD vs D

Can SYK be a good starting point?



Sachdev-Ye-Kitaev model

Majorana Fermions yx; satisty {xi,x;} = dij, 4,7 =1,....N

. . 3 2
SYK Hamiltonian: H = % qukl Ji i kXXX kX With <J7j2jkl> — ?)J'\T—J3

This talk:
A general Hamiltonian would be H = % E” Fv;,inXj—F% Zi,j’k,l Ji j ke IXiXGXEXI
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Feynman diagrams

Starting point: I' =0

Typical diagram for G(7) = (x;(7)x:(0)) at large N

A. Kitaev (2015).

Thanks to (ij p) = 3]!\,—‘];, the same in the thermodynamic limit!
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Self-consistency equation for sum of the diagrams:

G(w) = _Z.w_lz(w), ¥(1) = J*G(1)°




Infrared limit

Sachdev, Ye (1993)

H=———S"Jy-§; with S from SU(M)
>3

:

S — Schwinger bosons

In the infrared Jt > 1, take —iw — 0:

G(w) = _El(w), Y(1) = J*G(7)?

Exact solution on the line (T"=0): G(7) = signt.

BREE

And on the circle: G(7) = f}%rgtw)
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Field theory

Parcollet, Georges, Sachdev (2001) Kitaev (2015)

Average over disorder and integrate out Majoranas y

Z = | D|G, %] exp(—S|G, X))
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Saddle point equations
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Symmetries of the action

S, %) = -X f_ﬂgﬁz f%% drdr’ [tr In (9,67 + x2b,) 4+ L2 [Gab,]" + E?F‘%TGE,L_?,]

Jr — 0 action is invariant under reparametrization of time

T — f(7) with f(7) monotonic differentiable
G(r.7") = ['(N) VG (r) = FD S ()

S(r 1) = f1(@)PIS(f () = fENF ()

weakly broken by time derivative!



Symmetry of the mean field
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Invariant under f(7) = (gig ad — bc =1

Infinite dimensional Goldstone mode manifold
Each f € Diff/SL(2, R) generates a new solution:
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Large N action

beyond the strict IR the zero modes are slightly lifted

A. Kitaev (2015).
J. Maldacena, D. Stanford (2015).

2 | Q’Q
N
19
&c’d@“ '
/ action is ~ N
G

aT+b
SL(2, R) acts as 7 — 2+

Action for 7 — f(7): S
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Reparametrization action

D. Bagrets, A. Altland, A. Kamenev (2016).

S(G,Y) fﬁﬁ 1o fﬁﬂ 1 drdr’ [tr In (9,0 + %200} + L2 [qeb, ] + z?ﬁ,rGgff;,}

Construction of effective action for low-cost reparametrizations

2 "+ 3/2 pt + 3/2
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Short-time cutoff generates the action for these reparametrization modes:

S[f1 = M/d (é((:))f M = %NlnN



M of effective action
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SYK as Liuville Quantum Mechanics

"(+ 1/4f/ ! 1/4
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non-gaussian averaging
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Calculation of GF

D. Bagrets, A. Altland, A. Kamenev (2016).
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restoration of the full symmetry of the action at large times



Perturbed model

Motivation

e SYK model demonstrates non-FL behavior at all energies.
In particular, there is no quasi-particle description of excited
states.

e Extension to usual complex Fermions is straightforward at
the saddle-point level

e Can one use SYK model as a basis to construct a theory
of non-Fermi liquid state of interacting Fermions? Is SYK
solution stable (T = 0) w.r.t. perturbations, quadratic in
Fermions?

Quite a few recent papers argued that the answer is NO

(on the level of saddle-point approx.)

We study this problem beyond the saddle-point approximation



Previous results

S.-K. Jian, H. Yao (2017)
D. Chowdhury, Y. Werman, E. Berg, T. Senthil (2018)
X.-Y. Song, C.-M. Jian, L. Balents (2017)

d—dimensional array of SYK quantum dots
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e Intermediate T regime exists, Tx < T < J with non-FL
behavior

e At lowest T' FL is recovered. No soft mode fluctuations are
taken into account!



Perturbed model

1 1
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ergodicity in the Fock space localization in the Fock space

non-FL behavior of GF at all scales FIL. behavior of GF at small €



Previous numerics

A. Garcia-Garcia, B. Loureiro, A. R.-Bermudez, M. Tezuka (2017)

saddle-point N — oo exact diagonalization, middle of the band
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Chaotic phase is unstable at T' = 0 wrt quadratic term in the N — oo limit

Let us study the Green function G(7)



Simple estimates-1

Scaling analysis at the saddle-point level
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Simple estimates-2

Scaling analysis in the infrared limit

1 3/2
(/) ,
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Does not grow with 7: posible stability in the infrared

Naively: effect of quadratic term is small as long as v < 1/vV N



Perturbation theory for GF
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Technicalities

3G(r) = ~(GroldlSalél)o + (Grolo(Stlo, $2= [ drar' G2,

No Wick theorem, need for explicit calculation of different time orderings
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contributions 1, 6 cancel completely

Same QMech problem but with several quenches



Result for GF

3G(1) = eNVMJy? (/M) ™2
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Numerics

1/t,

dotted. Bagrets, Altland, Kamenev (2016)

v = 0, exact diagonalization
v = 0.01, exact diagonalization
v = 0.03, exact diagonalization

v = 0.2, mean field




More recent numerics

Chaotic-integrable transition at various energy densities

T. Nosaka, D. Rosa, J. Yoon (2018)

e Temperature-dependence of the transition: k. ~ 1 for low-
lying states and at x. ~ 15 for highly excited states

e Localization in the Fock space as probed by many-body
wavefunctions and spectral statistics

M=30, 50 Levels

[N=30, 10000 Levels|
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— k=100.
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More recent numerics

Chaotic-integrable transition at various energy densities

T. Nosaka, D. Rosa, J. Yoon (2018)

e Temperature-dependence of the transition: k. ~ 1 for low-
lying states and at x. ~ 15 for highly excited states

e Localization in the Fock space as probed by many-body
wavefunctions and spectral statistics
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Conclusions and perspective

Judging from the GF, Non-FL ground state (T'= 0) is stable
in nonzero area of the parameter space of SYK4 + SYK.>.
T his area decreases as number of Fermions N increases

Consistent with numerically observed transition in the spectral

+ raY avay e AW AI‘\I/'\I‘:"-:I'\I‘

Extension of the analysis for system of complex Fermions
and for spatially extended system is of primary interest

Treatment beyond perturbation theory is desirable: can effective
action for SYK, terms be derived?

Can SYHK-like model be realized in materials with Cooper
interaction, tending to create non-trivial pairing state and
strong disorder, suppressing the pairing?



